广东省茂名市信宜市2023-2024学年高二上学期11月期中考试数学试题(PDF版含答案)

文档属性

名称 广东省茂名市信宜市2023-2024学年高二上学期11月期中考试数学试题(PDF版含答案)
格式 zip
文件大小 514.7KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-11-10 00:03:00

文档简介

2023-2024 学年度第一学期期中考试
高二数学
本试卷共 6 页,22 小题,满分 150 分. 考试用时 120 分钟.
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生
号、试室号、座位号填写在答题卡上.
2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答
案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案
不能答在试卷上.
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题
卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,
然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的
答案无效.
4. 考生必须保持答题卡的整洁.考试结束后,将答题卡交回.
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1. 已知点 A(2,m),B(3,3) ,直线 AB 的斜率为 1,那么 m 的值为
A. 1 B. 2 C. 3 D. 4
2. 过点 P( 1,2)且方向向量为a ( 1,2)的直线方程为
A. 2x y 0 B. x 2y 5 0
C. x 2y 0 D. x 2y 5 0
1
3. 若平面 平面 ,平面 的法向量为n ( 2,1, ) ,则平面 的法向量可以
2

1 1 1
A. ( 1, , ) B. (2, 1,0) C. (1,2,0) D. ( ,1,2)
2 4 2
4. 已知点 A(4,1,3) ,B(2, 5,1),C 为线段 AB 上靠近 A 点的三等分点,则点 C 的
坐标为
14 11 8 5 10 7 5 7 3
A. ( ,3, ) B. ( , 3, ) C. ( , 1, ) D. ( , , )
3 3 3 3 3 3 2 2 2
高二数学试题 第 1 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
5. 袋内有大小相同的 3 个白球和 2 个黑球,从中不放回地摸球,用 A 表示“第一
次摸到白球”,用 B 表示“第二次摸到白球”,用 C 表示“第一次摸到黑球”,
则下列说法正确的是
A. A 与 B 为互斥事件 B. B 与 C 为对立事件
C. A 与 C 为相互独立事件 D. A 与 B 为非相互独立事件
6. 点 P 在直线3x y 5 0上,且点 P 到直线 x y 1 0的距离为 2 ,则 P 点
坐标为
A. (1,2) B. (2,1)
C. (1,2) 或 (2, 1) D. (2,1) 或 ( 2,1)
7. 随机抛掷一枚质地均匀的骰子,记正面向上的点数为 2a,则函数 f (x) x
2ax 2有两个不同零点的概率为
1 1 2 5
A. B. C. D.
3 2 3 6
8. 正四面体 ABCD 中,M,N 分别是 BC,AD 的中点,则直线 AM 和 CN 夹角的正
弦值为
2 5 2 3
A. B. C. D.
3 3 2 3
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,
有多项符合题目要求,全部选对的得 5 分,部分选对的得 2 分,有选错的得 0
分.
9. 已知直线 l : ax y 2 0, l : (3a 2)x ay 1 01 2 ,若 l1 // l a 2 ,则
A. 2 B. 1 C. 0 D. 1
10. 对于直线 l : x my 1,下列说法正确的是
A. 直线 l 恒过定点 (1,0)
B. 直线 l 斜率必定存在
C. m 3时直线 l 的倾斜角为60
1
D. m 2 时直线 l 与两坐标轴围成的三角形面积为
4
高二数学试题 第 2 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
11. 已知事件 A,B,且P(A) 0.5, P(B) 0.2,则下列结论正确的是
A. 如果 B A,那么 P(AB) 0.5
B. 如果 A 与 B 互斥,那么 P(AB) 0
C. 如果 A 与 B 相互独立,那么P(AB) 0
D. 如果 A 与 B 相互独立,那么P(AB) 0.4
12. 正方体 ABCD A1B1C1D1 的棱长为 2,E,F,G 分别为BC,CC1,BB1的中点.则
A. 直线 EF 与直线 AE 垂直
B. 直线 A1G 与平面 AEF 平行
9
C. 平面 AEF 截正方体所得的截面面积为
2
D. 点 A1 和点 D 到平面 AEF 的距离相等
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13. 已知空间向量a (1,0,2) ,b ( 2,1,3) ,则a 2b __________.
14. 某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好
选中 2 名女生的概率为__________.
15. 若正方形一条对角线所在直线的斜率为 2,写出该正方形的一条边所在直线的
斜率________.
16. 已知 A(1,0) ,B( 1,2),直线 l :2x ay a 0 上存在点 P,满足 | PA | | PB |
2 2 ,则实数 a 的取值范围是__________.
高二数学试题 第 3 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
四、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤.
17. ( 10 分 )
已知向量a (x,4,1) ,向量b ( 2, y, 1) ,向量 c (3, 2, z) ,且a // b ,b c .
求:
(1) a ,b , c ;
(2)a c 与b c所成角的余弦值.
18. ( 12 分 )
在平面直角坐标系 xOy 中,已知 ABC 的三个顶点的坐标分别为 A( 3,2),
B(4,3),C( 1, 2).
(1)求过点 B 且与 AC 边所在直线平行的直线方程;
(2)在 ABC 中,求 BC 边上的高所在直线的方程;
(3)求 ABC 的面积.
高二数学试题 第 4 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
19. ( 12 分 )
如图,在四棱锥 P ABCD 中, AD 平面 ABP,BC//AD, PAB 90 ,
PA AB 2, AD 3, BC 1,E 是 PB 的中点.
(1)证明:PB 平面 ADE;
(2)求直线 AP 与平面 AEC 所成角的正弦值.
P
E
D
A
B C
20. ( 12 分 )
某课外活动小组有三项不同的任务需要完成,已知每项任务均只分配给组员甲
和组员乙中的一人,且每项任务的分配相互独立,根据两人的学习经历和个人能力
1 1 3
知,这三项任务分配给组员甲的概率分别为 , , .
2 3 4
(1)求组员甲恰好分配到一项任务的概率;
(2)求组员甲至少分配到一项任务的概率;
(3)设甲、乙两人分配到的任务数分别为 x 项和 y 项,求P(x y).
高二数学试题 第 5 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
21. ( 12 分 )
如图,在正四棱柱 ABCD A1B1C1D1 中, AB 2, AA1 4. 点 A2 , B2 ,C2 ,
D2 ,分别在棱 AA1 ,BB1 ,CC1 ,DD1上, AA2 1, BB2 DD2 2,CC2 3.
(1)证明: B2C2 //A2D2 ;

(2)点 P 在棱 BB1 上,当平面PA2C2 与平面D2 A2C2 的夹角为 时,求B2P.
6
22. ( 12 分 )
已知直线 l: kx y 1 2k 0.
(1)当 k 1时,求直线 l 与直线2x y 1 0的交点坐标;
(2)若直线 l 交 x 轴负半轴于点 A,交 y 轴正半轴于点B.
① AOB的面积为 S,求 S 的最小值和此时直线 l 的方程;
1
②已知点 P(-2,1),当 PA PB 取最小值时,求直线 l 的方程.
2
高二数学试题 第 6 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}2023—2024 学年度第一学期期中考试
高二数学参考答案及评分说明
说明:
1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主
要考查的知识点和能力对照评分标准给以相应的分数.
2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和
难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果
后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,选择题和填空题不给中间分.
一、单选题
1.B 2.A 3.C 4.C 5.D 6.C 7.D 8.B
二、多选题
9.AB 10.AD 11.BD 12.BCD
三、填空题
3 1 2
13. 5, 2, 4 14. 15. 、 3(写一个即可) 16.[ ,2]
10 3 3
四、解答题
17.解: (1) a / /b ,
x 4 1
, ········································································································ 1 分
2 y 1
解得 x 2, y 4, ································································································ 2 分
故 a (2,4,1) ,b ( 2, 4, 1), ···················································································· 3 分
又因为b c ,
所以b c 0,即 6 8 z 0, ················································································· 4 分
解得 z 2 ,
故 c (3, 2,2) ··········································································································· 5 分
(2)由 (1)可得 a c (5,2,3) ,b c (1, 6,1) , ································································ 7 分
设向量a c 与b c 所成的角为 ,
(a c) (b c) 5 12 3 2
则 cos ······································································ 10 分
| a c ||b c | 38 38 19
18.解: (1) A( 3,2) ,C( 1, 2).
2 2
所以 kAC 2, ···························································································· 1 分
1 3
高二数学答案 第 1 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
所以所求直线方程为 y 3 2(x 4),即2x y 11 0; ············································· 3 分
(2)因为 B(4,3) ,C( 1, 2).
3 2
则直线 BC 的斜率 kBC 1. ················································································· 4 分
4 1
BC 边上的高线斜率 k 1, ···················································································· 5 分
BC 边上的高线方程为: y 2 (x 3) ,即 x y 1 0.
BC 边上的高线所在的直线方程为 x y 1 0. ····························································· 7 分
(3) B(4,3),C( 1, 2),
| BC | ( 2 3)2 ( 1 4)2 5 2 , ······································································· 8 分
且直线 BC 的方程为: x y 1 0. ··············································································· 9 分
| 3 2 1|
点 A 到直线 BC 的距离 d 3 2 , ·························································· 10 分
2
1
ABC 的面积 S 5 2 3 2 15. ······································································· 12 分
2
19. (1)证明:因为 AD 平面 PAB, PB 平面 PAB,
所以 AD PB. ········································································································· 1 分
又 PA AB,E 是 PB 的中点,
所以 AE PB. ·········································································································· 2 分
又 AD,AE 都在平面 ADE 内,且 AD AE A,···························································· 3 分
所以 PB 平面 ADE. ································································································· 4 分
(2)解:因为 AD 平面 PAB, PA 平面 PAB, AB 平面 PAB,
所以 AD AB , AD PA.
又因为 PA AB,
以 AB,AD,AP 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的建立空间直角坐标系 A xyz ,
则 A(0,0,0) ,C(2,1,0) , E(1,0,1) , P(0,0,2) , ················· 6 分 z
P
所以 AC (2,1,0) , AE (1,0,1) , AP (0,0,2), ·············· 7 分
设平面 AEC 的法向量 n (x, y, z), E
D
n AC 0, 2x y 0,
A y
则 即 令 x 1,则 y 2, z 1,
n AE 0, x z 0, B
C
所以 n (1, 2, 1).
x
·························································· 9 分
设直线 AP 与平面 AEC 所成的角为 .
| n AP | 2 6
sin | cos n AP | . ··································································· 11 分
| n || AP | 6 2 6
高二数学答案 第 2 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
6
所以直线 AP 与平面 AEC 所成角的正弦值为 . ···························································· 12 分
6
20.解: (1) 设事件 Ai 为甲分配到第 i 项任务,则事件 Ai 为乙分配到第 i 项任务, i 1,2,3,
依题意,事件 Ai 、 Ai 两两相互独立,1 分
····································································································································
设事件B 为甲恰好分配到一项任务,则B A1A2A3 A1A2A3 A1A2A3,······························· 2 分
因为 A1A2A3, A1A2A3, A1A2A3互斥,
所以P(B) P(A1A2A3) P(A1A2A3) P(A1A2A3)
1 1 3 1 1 3 1 1 3 3
1 1 1 1 1 1 ; ························ 4 分
2 3 4 2 3 4 2 3 4 8
(2)记事件 C 为甲一项任务都没有被分配,则C A1A2A3, ················································ 5 分
1 1 3 1
所以 P(C) P(A1A2 A3) 1 1 1 , ······················································ 7 分
2 3 4 12
11
所以组员甲至少分配到一项任务的概率为1 P(C) ; ··················································· 8 分
12
(3) 依题意满足 x y ,即 x 3, y 0 或 x 2, y 1, ················································· 9 分
所以所求事件为 A1A2A3 A1A2A3 A1A2A3 A1A2A3 ,
因为 A1A2A3, A1A2A3, A1A2A3, A1A2A3 互斥,
所以 P(x y) P(A1A2A3 A1A2A3 A1A2A3 A1A2A3) P(A1A2 A3) P(A1A2 A3) P(A1A2 A3) P(A1A2 A3)
1 1 3 1 1 1 1 2 3 1 1 3 13
. ······························································ 12 分
2 3 4 2 3 4 2 3 4 2 3 4 24
21.证明: (1)以C 为坐标原点,CD,CB,CC 所在直线为 x, y, z1 轴建立空间直角坐标系,如图,
则C(0,0,0),C2(0,0,3),B2(0,2,2),D2(2,0,2), A2(2,2,1), ··················· 1 分
B C (0, 2,1), A D (0, 2,1), ··········································· 2 分 2 2 2 2
B C ∥A D , ···································································· 3 分 2 2 2 2
又 B2C2,A2D2 不在同一条直线上,
B2C2∥A2D2 . ······································································· 4 分
(2)设 P(0,2, )(0 4) , ····················································· 5 分
则 A2C2 ( 2, 2,2),PC2 (0, 2,3 ),D2C2=( 2,0,1),
设平面PA2C2 的法向量n (x, y, z) ,
n A2C2 2x 2y 2z 0
则 ,
n PC2 2y (3 )z 0
高二数学答案 第 3 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
令 z 2 ,得 y 3 , x 1,
n ( 1,3 ,2), ································································································· 7 分
设平面 A2C2D2 的法向量m (a,b,c) ,
m A2C2 2a 2b 2c 0
则 ,
m D2C2 2a c 0
令 a 1,得b 1,c 2 ,
m (1,1,2), ·········································································································· 9 分
n m 6 3
cos n,m cos , ········································· 10 分
n m 6 4 ( 1)2 (3 )2 6 2
化简可得, 2 4 3 0,
解得 1或 3, ·································································································· 11 分
P(0,2,1) 或 P(0,2,3),
B2P 1.················································································································ 12 分
向量法评分注意:【摘自 2023 年山东高考评卷细则】
1、建系 1 分,建系可以文字语言叙述,也可以在图上标出,只要有建系就得 1 分。如果用左手系,只有全部正
确才得满分,否则 0 分。
2、法向量只要正确就得 2 分。
3、有两个法向量的夹角公式就得 1 分,不带绝对值不扣分。
4、若只写结果B2P 1,没有任何过程,可得结果分 2 分。
22.解: (1) 当 k 1时,直线 l 为 x y 3 0,
2
x
x y 3 0 3
由 ,解得: , ·············································································· 1 分
2x y 1 0 7y
3
2 7
故所求交点为 , ; ······························································································ 2 分
3 3
(2)①由题意设 A( a,0) , B(0,b) , a 0,b 0 ,
x y
故直线 l 的方程为 1, ···················································································· 3 分
a b
因为直线 l 过定点 ( 2,1) ,
2 1
代入方程可得 1, ···························································································· 4 分
a b
2 1 2 1
所以1 2 ,
a b a b
所以 ab 8, ·············································································································· 5 分
高二数学答案 第 4 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
2 1
当且仅当 时等号成立,
a b
1
所以 S ab 4,
2
所以 AOB的面积的最小值是 4, ·················································································· 6 分
2 1

此时 a b ,解得: a 4,b 2 ;

ab 8
所以此时直线 l 的方程为: x 2y 4 0; ···································································· 7 分
1 2
②由题意,P(-2,1),设 PAO (0 ) ,则PA ,PB ,
2 sin cos
1 1 1 sin cos
PA PB , ····································································· 8 分
2 sin cos sin cos

令 sin cos t ,则 t 2 sin( ) , (0, ),
4 2
t2 1
所以 t (1, 2],sin cos , ················································································ 9 分
2
1 sin cos 2t 2
PA PB
2 sin cos t2 1 1 ,
t
t
1
f (t) t 在 (1, 2]上单调递增,
t
故当 t 2 时, f (t) 取最大值, ················································································· 10 分
1
此时PA PB 取最小值,
2

当 t 2 时,有 sin( ) 1,解得 ,······························································ 11 分
4 4

所以直线 l 的倾斜角为 ,
4

所以 k tan 1,
4
所以直线方程为 x y 3 0. ····················································································· 12 分
1 2k
解法 2:由(1)可知:k>0,A( ,0), B(0,2k 1), P( 2,1)
k
由 P、A、B 三点共线,设 PB 的中点为 M,则 M(-1,k+1)
1
PA PB PA PM AM ················································································ 8 分
2
高二数学答案 第 5 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
2
2 1 2k 2AM 1 k 1
k

k 2
1 1
2(k ) 2 ······················································································ 9
k 2

k
2 k 2
1 1
2 2 k 2 8 ··············································································· 10 分
k 2 k
2 1 1当且仅当k ,k 时取等号,此时k 1 ···························································· 11 分
k 2 k
此时直线方程为:x-y+3=0 ··························································································· 12 分
高二数学答案 第 6 页(共 6 页)
{#{QQABIYSQggigQABAAAhCAw2iCAAQkBACCIoGQBAIMAABgRNABAA=}#}
同课章节目录