准安市2023一2024学年度第一学期高二年级调研测试
数学试题
2023.11
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共6页,共150分。考试时间120分钟。考试结束后,只要将答题卡交回。
2.答题前,请务必将自己的学校、姓名、考试号用0.5毫米黑色签字笔填写在答题纸上,
并用2B铅笔将答题卡上考试号对应数字框涂黑,如需改动,请用橡皮擦干净后,再
正确填涂。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与你本人的是否相符。
4.所有试题的答案全部在答题卡上作答。
一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.直线x+V3y+1=0的倾斜角为
A君
B.
c.5
2.已知椭圆的中心在原点,焦点在x轴上,焦距为2,长轴长是短轴长的√2倍,则该椭
圆的标准方程为
r
A.
B.
84
C.
8+4
1
号1
D.
3.
已知抛物线y2=mx(m>0)的准线方程为x=-1,则m的值为
A.1
B.2
C.4
D.8
y
4,双曲线子
=1(a>0b>0)的离心率为5
则其渐近线方程为
1
A.y=±
B.y=+2x
C.y=-
D.=t6
5.直线1:V5x-y+3=0被圆C:x2+(y-1)2=4截得的弦长为
A.5
B.25
C.5
D.2W5
高二数学第1页(共6页)
已知点P(m四在圆O:x2+y=6外,则直线+y=6与圆0的位置关系为
A.相交两8人干)处册交
B.相切
C.相离
D.无法确定
1没瑞物线2:上一点P到:轴的距商为4,点0为圆(-4+0+2=1任-点
则d+P的最小值为
A.25-1
B.2
C.3
D.4
,y2
&如图,椭圆C:+=(a>b>0)的右顶点为A,上顶点
为B,直线OP L AB且在第一象限交椭圆于P点,设OP与
侣的支点为M,若丽丽,
椭圆的离心率为
3
c.5
2
D.
二、选择题:本大题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符
合题目要求。全部选对的得5分,有选错的得0分,部分选对的得2分。
9.关于直线I:ax+y+a=0,以下结论正确的有
A.a=1时,直线1在两坐标轴上的截距相等
B.直线1必过第二象限
C.a<0时,直线1不过第四象限
D.a>0时,直线1过第二、三、四象限
10.已知⊙C:x2+y2=1与⊙C2:(x-5)2+y2=16,以下结论正确的有
A.⊙C,与⊙C,有且仅有2条公切线
B.若直线I与⊙C、⊙C,分别切于相异的A,B两点,则AB=4
C.若M,N分别是OC与OC,上的动点,则MN的最大值为10
D.0G与0G的-条公切线率为
1山.关于双曲线C:-y=1,以下结论正确的有
4
A准线方程为r=士45
B.焦点到渐近线的距离为1
C与双重线C两文各有一个文点的直绘条丰的原值国为(为
D.过点(山,)有且仅有2条直线与双曲线C仅有一个公共点
高二数学第2页(共6页)淮安市 2023~2024 学年度第一学期期中调研测试
高二数学参考答案
一、单选题:本大题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.B 2.A 3.C 4.A 5.D 6.A 7.C 8.B
二、选择题:本大题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符
合题目要求。全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分。
9.ACD 10.BCD 11.BC 12.ABD
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分。
2 21
13. 3 14.33 15. 5 或 7 16. (0, ) ( ,+ )
3 6
四、解答题:本大题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。
3 t 1 t 1
17.(1)设 A(1, t),由题意知 A,C 的中点 ( , ) 在直线 l2 上,则有 = 0 , t =1,
2 2 2
A点坐标为 (1,1). ············································································ 4 分
(2)由题意知C 关于 l 的对称点C '(0, 1)1 在直线 AB 上,则有边 AB 所在直线方程为
2x y 1= 0
y +1 1
= x ,即 2x y 1= 0.联立 l2 方程有 3 ,解得 B( , 2) . ····· 8 分
2 y = x 2
2
又 C (2, 1),则 BC 所在直线方程为 2x 5y 9 = 0 ·································· 10 分
18.(1)法 1:因为圆心C 在直线 y = x 1上,设C(a,a 1) ,由CA = CB 可得CA2 = CB2 ,
1 2 8
即 (a ) + (a )
2 = (a 1)2 + (a 2)2 ,得 a =1,所以C(1,0) ························· 3 分
5 5
r2 = (1 1)2 + (1 2)2 =1,故圆C 的标准方程为 (x 1)2 + y2 =1 ························· 4 分
3 4 1
法 2:设 AB 的中点为M ,则M ( , ) ,直线 AB 的斜率为 ,故线段 AB 中垂线的方
5 5 2
4 4 y = 2x+2 x =1
程为 y = 2(x ) ,即 y = 2x+2 ,联立 解得 ,
5 5 y = x 1 y = 0
所以C(1,0) . ······················································································· 3 分
故圆C 的标准方程为 (x 1)2 + y2 =1 ·························································· 4 分
(2)因为点 P 在圆 C 上,所以 2 ,设点 P(x, y) ,且满足 (x 1)2 + y2PC =1 =1
PC2 + PD2 + PE2 =1+ (x +1)2 + y2 = x2 + y2 + 2x + 2 = 4x + 2 ··························· 8 分
{#{QQABQYYUogiIQBBAAQgCEwUCCgIQkBGCACoGxBAAMAABwAFABAA=}#}
又 x [0,2],所以 4x + 2 [2,10] ····························································· 12 分
y
2
1 = 2px1①
19.(1)设 A(x1, y1), B(x2 , y2 ),则有 ,
y
2
2 = 2 px2②
① ②得 y 2 21 y2 = 2 p(x1 x2 ) = (y1 + y2 )(y1 y2 ) ③ ··································· 2 分
y1 y2
A, B 均在直线 l 上, = 2 ,又 AB 中点为M (3,2),则有 y1 + y2 = 4 ,代入x1 x2
③有 4 2 = 2 p , p = 4 . 抛物线C 的标准方程为 y2 = 8x ······························· 4 分
y1 4 8
y 2 y 2 k1 = =
(2)由题意知 P(2,4),设 1 2 , y 2A( , y ), B( , y y + 4 ,同理有1 2 ) 1 1
8 8 2
8
8
k2 = . ·························································································· 6 分
y2 + 4
8 8 64
k1 k2 = = ④. ········································ 10 分
y1 + 4 y2 + 4 y1y2 + 4(y1 + y2 ) +16
y2 = 8x y1 + y2 = 4
联立直线 l 与抛物线C : ,易得 y2 4y 16 = 0 ,则有 ,代入
y = 2x 4 y1 y2 = 16
④式有 k1 k2 = 4 ·················································································· 12 分
| 6 3+ 7 |
20. (1) AB 直线方程为 x 3y + 7 = 0 , D 到直线 AB 的距离为 = 10 . · 2 分
10
所求内切圆方程为 (x 6)2 + (y 1)2 =10 . ··············································· 4 分
1
(2)由对称性知直线 AC 斜率为 ,直线 AC 方程为 x + 3y +1= 0 . ············· 6 分
3
设直线 BC 斜率为 k ,则 BC 方程为 kx y 8k + 5 = 0 .
| 2k + 4 | 1
BC 与内切圆相切, = 10 ,解得 k = 3 或 (舍).
k 2 +1 3
直线 BC 方程为3x + y 29 = 0. ···························································· 8 分
联立直线 AC 方程有C(11, 4) . ····························································· 10 分
设外接圆一般方程为 x2 + y2 + Dx + Ey + F = 0,则有
4D + E + F +17 = 0
8D + 5E + F + 89 = 0 解得 D = 7, E = 3, F = 48.
11D 4E + F +137 = 0
外接圆方程为 x2 + y2 7x + 3y 48 = 0 ·················································· 12 分
{#{QQABQYYUogiIQBBAAQgCEwUCCgIQkBGCACoGxBAAMAABwAFABAA=}#}
21. (1)设所求曲线C 上任一点的坐标为 (x, y),圆O 上的对应点的坐标为 (x0 , y0 )
x 20 = x x
由题意可得 ,因为 x 2 0 + y
2
0 = 4 ,所以 x
2 + 4y2 = 4 即 + y2 =1 ·········· 4 分
y0 = 2y 4
注:直接写出方程给 1 分.
n n 2 m
(2)法 1:设 D(m,n), kAD = , kBD = ,故 kPA = ,
m + 2 m 2 n
2n
2 m m + 2
又 PAB = 2 DAB ,故 = 2 ················································ 6 分 n n
1
(m + 2)2
m2 2
又因为 + n2 =1,故3m2 + 8m + 4 = 0,m = 或m = 2(舍) ················· 10 分
4 3
2 1 2 4
代入椭圆有 n = 2 所以 ABD 的面积为 4 2 = 2 ······················ 12 分
3 2 3 3
1 1
法 2:因为 k k k = k = 4kAD BD = ,故 BD ,故4k PA AD
4 AD
2
2kAD 2 1 m
又 PAB = 2 DAB , kPA = 4kAD = 2 ,故 k AD = =1 k 2 ························ 6 分 AD 2 (n + 2)
m2 2
又因为 + n2 =1,故3m2 + 8m + 4 = 0,m = 或m = 2(舍) ················· 10 分
4 3
2 1 2 4
代入椭圆有 n = 2 所以 ABD 的面积为 4 2 = 2 ······················ 12 分
3 2 3 3
a = 2
x2 y2
22.(1) b 3 a = 2,b = 3 , 双曲线方程为 =1 ····························· 2 分
= 4 3
a 2
(2)①设 P( 1, t), A( 2,0), B(2,0) AP 的直线方程为 y = t(x + 2) . BP 的直线方程
x2 y2
t =1
为 y = (x 2) .设M (x1, y1), N (x2 , y2 ),联立直线 AP 与双曲线方程有 4 3 ,
3
y = t(x 2)
化简得 (3 4t2 )x2 16t2x 16t 2 12 = 0 ······················································· 4 分
16t2 12 8t2 + 6 12t
由韦达定理知 2 x1 = ,则有 x1 = ,代入直线有 y1 = .
3 4t2
2
3 4t2 3 4t
8t2 + 6 12t
M ( , ) . ············································································· 6 分
3 4t2 3 4t2
{#{QQABQYYUogiIQBBAAQgCEwUCCgIQkBGCACoGxBAAMAABwAFABAA=}#}
4 2 16 2 16
联立直线 BP 与双曲线方程,化简有 (3 t ) + t x t
2 12 = 0 ,由韦达定理知
9 9 9
16
t2 12
8t2 + 54 8t2 + 54 36t
2 x2 =
9
,则有 x2 = ,代入直线有 N ( , ) . ········· 8 分 4 2 2
3 t2 4t 27 4t 27 4t
2 27
9
8t2 + 6 12t 8t2 + 54 36t
设Q(m,0),QM = ( m, ),QN = ( m, ),由QM QN 得
3 4t2 3 4t2 4t2 27 4t2 27
8t2 + 6 36t 12t 8t 2 + 54
( m) ( m) = 0 ,化简得 (8t2 +18)(m + 4) = 0
3 4t2 4t2 27 3 4t2 4t2 27
m = 4 Q 为 ( 4,0) . ········································································· 10 分
3
②设直线MN 方程为 x = my 4 ,则有D( 1, ) .
m
x = my 4
联立方程组 2 2 x2 y2 ,化简得 (3m 4)y 24my + 36 = 0 ,则有
=1
4 3
24m
y1 + y2 = 3m2 4
36y1 y2 = m2 4
3 3
由QD = QM 知 = y1 ,由QP = QN 知 = y2 .
m m
3 1 1 3 y + y 3 24m
+ = ( + ) = 1 2 = = 2 ··········································· 12 分
m y1 y2 m y1 y2 m 36
{#{QQABQYYUogiIQBBAAQgCEwUCCgIQkBGCACoGxBAAMAABwAFABAA=}#}