江苏省淮安市涟水县第一中学高二数学选修1-1教案:1.3. 1 量词

文档属性

名称 江苏省淮安市涟水县第一中学高二数学选修1-1教案:1.3. 1 量词
格式 zip
文件大小 52.8KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2015-03-25 17:56:15

图片预览

文档简介

班级:高二( )班 姓名:____________
教学目标:
1.通过实例理解全称量词和存在量词的意义;
2.掌握全称命题和存在性命题的定义,并能判断其真假.
教学重点:对全称命题和存在性命题的理解.
教学难点:如何判断命题的真假.
教学方法:问题链导学,讲练结合.
教学过程:
问题情境
在日常生活和学习中,我们经常遇到这样的命题:
(1)所有中国公民的合法权利都受到中华人民共和国宪法的保护;
(2)对任意实数x,都有x2≥0;
(3)存在有理数x,使x2-2=0.
思考:上述命题有什么不同?
二、学生活动
1.讨论老师提出的问题,举手发言;
2.列举数学中的类似实例;
3.分析、概括各种实例的共同特征.
三、建构数学
1.“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,通常用符号“x”表示“对任意x”.
2.“有一个”、“有些”、“存在”等表示部分的量词在逻辑中称为存在量词,通常用符号“x”表示“存在x”.
3.含有全称量词的命题称为全称命题;含有存在量词的命题称为存在性命题.它们的一般形式可以表示为:全称命题:xM,p(x);存在性命题:x M,p(x);其中,M为给定的集合,p(x)是一个含有x的语句.
4.(1)要判定一个存在性命题为真,只要在给定的集合中,找到一个元素x,使p(x)为真,否则命题为假;
(2)要判定一个全称命题为真,必须对给定集合的每一个元素x,p(x)都为真,但要判定一个全称命题为假,只要在给定的集合内找出一个x0,使p(x0)为假.
数学运用
例1 判断下列命题的真假:
(1)xR, ;
(2)xR, ;
(3)xQ, x2-8=0;
(4)xR, x2+2>0.
例2 判断下列命题是全称命题还是存在性命题:
(1)任何实数的平方都是非负数;
(2)任何数与0相乘,都等于0;
(3)任何一个实数都有相反数;
(4)有些三角形的三个内角都是锐角.
例3 判断下列命题的真假:
(1)中国所有的江河都流入太平洋;
(2)有的四边形既是矩形,又是菱形;
(3)实系数方程都有实数解;
(4)有的数比它的倒数小.
五、要点归纳与方法小结
本节课学习了以下内容:
1.如何理解全称命题和存在性命题;
2.怎样判断全称命题和存在性命题的真假
命题 全称命题“” 存在性命题“”
表述方法 ①对所有的x∈A,p(x)成立②对一切x∈A,p(x)成立③对每一个x∈A,p(x)成立④任选一个x∈A,p(x)成立⑤凡x∈A,都有p(x)成立 ①存在x∈A,使p(x)成立②至少有一个x∈A,使p(x)成立③对有些x∈A,使p(x)成立④对某个x∈A,使p(x)成立⑤有一个x∈A,使p(x)成立
六、随堂练习
1.指出下列语句中的量词:
(1)有的等差数列是等比数列 (2)存在相似三角形全等
(3)两个正数的算术平均数不小于它们的几何平均数
2.下列全称命题中,真命题的序号为
(1)末位是偶数的整数总能被2整除
(2)角平分线上的点到这个角的两边的距离相等
3.下列命题是存在性命题的是
(1)正四棱柱都是平行六面体 (2)偶函数的图象关于轴对称
(3)存在实数大于等于3 (4)平面上不相交的两条直线是平行直线
(5)与同一平面所成的角相等的两条直线平行;
(6)与圆只有一个公共点的直线是圆的切线
4.试判断以下命题的真假:
PAGE
- 1 -