2011—2023年新课标全国卷高考数学分类汇编——9.概率统计(含解析)

文档属性

名称 2011—2023年新课标全国卷高考数学分类汇编——9.概率统计(含解析)
格式 zip
文件大小 19.4MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2023-11-14 21:53:20

文档简介

中小学教育资源及组卷应用平台
2011年—2023年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编
13.排列组合、概率统计(逐题解析版)
一、选择题
(2023·新高考Ⅰ,9多选题)有一组样本数据,其中是最小值,是最大值,则( )
A. 的平均数等于的平均数
B. 的中位数等于的中位数
C. 的标准差不小于的标准差
D. 的极差不大于的极差
【答案】BD
【解析】对于选项A:设的平均数为,的平均数为,
则,
因为没有确定的大小关系,所以无法判断的大小,
例如:,可得;
例如,可得;
例如,可得;故A错误;
对于选项B:不妨设,
可知的中位数等于的中位数均为,故B正确;
对于选项C:因为是最小值,是最大值,
则的波动性不大于的波动性,即的标准差不大于的标准差,
例如:,则平均数,
标准差,
,则平均数,
标准差,
显然,即;故C错误;
对于选项D:不妨设,
则,当且仅当时,等号成立,故D正确;
故选:BD.
(2023·新高考Ⅱ,3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种 B.种 C.种 D.种
【答案】D
【解析】根据分层抽样的定义知初中部共抽取人,高中部共抽取,
根据组合公式和分步计数原理则不同的抽样结果共有种.
故选:D.
(2023·新高考Ⅱ,12多选)在信道内传输0,1信号,信号传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为
C.采用三次传输方案,若发送1,则译码为1的概率为
D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
【答案】ABD
【解析】对于A,依次发送1,0,1,则依次收到l,0,1的事件是发送1接收1、发送0接收0、发送1接收1的3个事件的积,
它们相互独立,所以所求概率为,A正确;
对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到l,0,1的事件,
是发送1接收1、发送1接收0、发送1接收1的3个事件的积,
它们相互独立,所以所求概率为,B正确;
对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,
它们互斥,由选项B知,所以所求的概率为,C错误;
对于D,由选项C知,三次传输,发送0,则译码为0的概率,
单次传输发送0,则译码为0的概率,而,
因此,即,D正确.
故选:ABD
(2023·全国甲卷,理6)某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A. 0.8 B. 0.6 C. 0.5 D. 0.4
【答案】A
【解析】
【分析】先算出同时爱好两项的概率,利用条件概率的知识求解.
【详解】同时爱好两项的概率为,
记“该同学爱好滑雪”为事件,记“该同学爱好滑冰”为事件,
则,
所以.
故选:.
(2023·全国甲卷,理9)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )
A.120 B.60 C.30 D.20
【答案】B
【解析】不妨记五名志愿者为,假设连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有种方法,
同理:连续参加了两天公益活动,也各有种方法,
所以恰有1人连续参加了两天公益活动的选择种数有种.
故选:B.
(2023·全国甲卷,文4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )
A. B. C. D.
【答案】D
【解析】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,
其中这2名学生来自不同年级的基本事件有,
所以这2名学生来自不同年级的概率为.故选:D
(2023·全国乙卷,理5文7)设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )
A. B. C. D.
【答案】C
【解析】因为区域表示以圆心,外圆半径,内圆半径的圆环,
则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角,
结合对称性可得所求概率.
故选:C.
(2023·全国乙卷,理7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )
A.30种 B.60种 C.120种 D.240种
【答案】C
【解析】首先确定相同得读物,共有种情况,
然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,
根据分步乘法公式则共有种,
故选:C.
(2023·全国乙卷,文9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )
A. B. C. D.
【答案】A
【解析】概率.
故选:A
(2022·新高考Ⅰ,5)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
【答案】D
【解析】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.故选:D.
(2022·新高考Ⅱ,5)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A. 12种 B. 24种 C. 36种 D. 48种
【答案】B
【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,故选:B
(2022·全国甲卷,文理2)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于
B.讲座后问卷答题的正确率的平均数大于
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
【答案】B
【解析】讲座前中位数为,所以错;
讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;
讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
讲座后问卷答题的正确率的极差为,
讲座前问卷答题的正确率的极差为,所以错.
故选:B.
(2022·全国乙卷,理10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A. p与该棋手和甲、乙、丙的比赛次序无关 B. 该棋手在第二盘与甲比赛,p最大
C. 该棋手在第二盘与乙比赛,p最大 D. 该棋手在第二盘与丙比赛,p最大
【答案】D
【解析】该棋手连胜两盘,则第二盘为必胜盘,
记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为,
则此时连胜两盘的概率为


记该棋手在第二盘与乙比赛,且连胜两盘的概率为,

记该棋手在第二盘与丙比赛,且连胜两盘的概率为


即,,
则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;
与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.
故选:D
(2022·全国乙卷,文4)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
则下列结论中错误的是( )
A.甲同学周课外体育运动时长的样本中位数为7.4
B.乙同学周课外体育运动时长的样本平均数大于8
C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4
D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6
【答案】C
【解析】对于A选项,甲同学周课外体育运动时长的样本中位数为,A选项结论正确.
对于B选项,乙同学课外体育运动时长的样本平均数为:

B选项结论正确.
对于C选项,甲同学周课外体育运动时长大于的概率的估计值,
C选项结论错误.
对于D选项,乙同学周课外体育运动时长大于的概率的估计值,
D选项结论正确.
故选:C
(2021·新高考Ⅰ,8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立
【答案】B
【解析】
故选:B
(2021·新高考Ⅰ,9)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同
C. 两组样本数据的样本标准差相同 D. 两组样数据的样本极差相同
【答案】CD
【解析】A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;
故选:CD
(2021·新高考Ⅱ,6)某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A. 越小,该物理量在一次测量中在的概率越大
B. 越小,该物理量在一次测量中大于10的概率为0.5
C. 越小,该物理量在一次测量中小于9.99与大于10.01的概率相等
D. 越小,该物理量在一次测量中落在与落在的概率相等
【答案】D
【解析】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;
对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;
对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;
对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.
故选:D.
(2021·新高考Ⅱ,9)下列统计量中,能度量样本的离散程度的是( )
A. 样本的标准差 B. 样本的中位数
C. 样本的极差 D. 样本的平均数
【答案】AC
【解析】由标准差定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;
由极差的定义可知,极差考查的是数据的离散程度;
由平均数的定义可知,平均数考查的是数据的集中趋势;
故选:AC.
(2021·新高考Ⅱ,12)设正整数,其中,记.则( )
A. B. C. D.
【答案】ACD
【解析】对于A选项,,,
所以,,A选项正确;
对于B选项,取,,,
而,则,即,B选项错误;
对于C选项,,
所以,,

所以,,因此,,C选项正确;
对于D选项,,故,D选项正确.
故选:ACD.
(2021·全国甲卷,文理2)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C. 估计该地农户家庭年收入的平均值不超过6.5万元
D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
【答案】C
【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.
该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;
该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;
该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;
该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.
综上,给出结论中不正确的是C.
故选:C.
(2021·全国甲卷,理10) 将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
【答案】C
【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.
(2021·全国甲卷,文10)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. 0.3 B. 0.5 C. 0.6 D. 0.8
【答案】C
【解析】,故选:C.
(2021·全国乙卷,理6) 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种 B. 120种 C. 240种 D. 480种
【答案】C
【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,
故选:C.
(2020·新高考Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种 B.90种 C.60种 D.30种
【答案】C 【解析】首先从名同学中选名去甲场馆,方法数有;然后从其余名同学中选名去乙场馆,方法数有;最后剩下的名同学去并场馆.故不同的安排方法共有种.
(2020·新高考Ⅰ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56% C.46% D.42%
【答案】C 【解析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,
则,,,
所以
所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.
(2020·新高考Ⅰ,12)(多选题)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
【答案】AC 【解析】对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,所以
,当时,,
当时,,两者相等,所以B选项错误.
对于C选项,若,则,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且().


由于,所以,所以,
所以,
所以,所以D选项错误.
故选:AC
(2020·全国卷Ⅰ,文理5)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B. C. D.
【答案】D
【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.
(2020·全国卷Ⅰ,理8)的展开式中x3y3的系数为( )
A.5 B.10 C.15 D.20
【答案】C 【解析】展开式的通项公式为(且)
所以与展开式的乘积可表示为:

在中,令,可得:,该项中的系数为,
在中,令,可得:,该项中的系数为.
所以的系数为.
(2020·全国卷Ⅰ,文4)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )
A. B. C. D.
【答案】A
【解析】如图,从5个点中任取3个有
共种不同取法,
3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A
(2020·全国卷Ⅱ,理3文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
【答案】B【解析】由题意,第二天新增订单数为,故需要志愿者名.
(2020·全国卷Ⅱ,文3)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤iA.5 B.8 C.10 D.15
【答案】C
【解析】根据题意可知,原位大三和弦满足:.
∴;;;;.
原位小三和弦满足:.
∴;;;;.
故个数之和为10.
(2020·全国卷Ⅲ,理3)在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
【答案】B
【解析】对于A选项,该组数据的平均数为,
方差为;
对于B选项,该组数据的平均数为,
方差为;
对于C选项,该组数据的平均数为,
方差为;
对于D选项,该组数据的平均数为,
方差为.
因此,B选项这一组的标准差最大.
故选:B.
(2020·全国卷Ⅲ,文3)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
A.0.01 B.0.1 C.1 D.10
【答案】C 【解析】因为数据的方差是数据的方差的倍,所以所求数据方差为.
(2019·全国卷Ⅰ,理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A. B. C. D.
【答案】A解析:一共有种可能,其中满足恰有3个阳爻的有种,故概率为。
(2019·全国卷Ⅰ,文6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生 B.200号学生 C.616号学生 D.815号学生
【答案】C 解析:从1000名学生从中抽取一个容量为100的样本,系统抽样的分段间隔为,
号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,设其数列为,则,当时,,即在第62组抽到616.
(2019·全国卷Ⅱ,理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数 B.平均数 C.方差 D.极差
【答案】A 解析:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.
(2019·全国卷Ⅱ,文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
A. B. C. D.
【答案】B 解析:设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,共10种.其中恰有2只做过测试的取法有共6种,
所以恰有2只做过测试的概率为,选B.
方法2:由题意,从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为.∴p.故选:B.
(2019·全国卷Ⅲ,理3文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6 C.0.7 D.0.8
【答案】C 解析:某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,
其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,
阅读过《西游记》且阅读过《红楼梦》的学生共有60位
所以,该校阅读过《西游记》的学生人数为70人,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为:。
(2019·全国卷Ⅲ,理4)的展开式中的系数为( )
A.12 B.16 C.20 D.24
【答案】A 解析:的通项公式为,利用通项公式求出,,的展开式中x3的系数:,故选A
法二:利用组合的性质,展开式中x3的系数为
(2019·全国卷Ⅲ,文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
【答案】D解析:设两名男生为;两名女生为。则把两位男同学和两位女同学随机排成一列共有,,,,,;
,,,,,;
,,,,,;
,,,,,.共24种。其中两位女同学相邻的有,,,,,,,,,,,,共12种,所以两位女同学相邻的概率为:.
解法2:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,
再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p,
(2018·新课标Ⅰ,文理3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下列选项中不正确的是:
A.新农村建设后,种植收入减少。
B. 新农村建设后,其他收入增加了一倍以上。
C. 新农村建设后,养殖收入增加了一倍。
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A解析:由题干可知,农村的经济收入增加了一倍,实现翻番。为方便可设建设前后收入分别为100,200(单位省去)
A中,种植收入前后分别为,60.74,收入增加了,因此A选项不正确。
B中,其他收入前后分别为4.10.增加了一倍以上,B正确。
C中,养殖收入前后分别为30.60.收入增加了一倍,C正确。
D中,建设后,养殖收入与第三产业收入的和为(30+28)*2=116>100,D正确。故选A
(2018·新课标Ⅰ,理10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则( )
A. B. C. D.
【答案】A 解析:设.,,,

, ,故选A.
(2018·新课标Ⅱ,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B. C. D.
【答案】(2018·新课标Ⅱ,文5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )
A. B. C. D.
【答案】D 解析:从5个人中抽取2人的基事件总数为10种可能;从3人中抽取2人有3种可能;概率为0.3.
C 解析:30以内的素数有10个,满足和为30的素数对有3对,概率为,选C.
(2018·新课标Ⅲ,理5)的展开式中的系数为( )
A.10 B.20 C.40 D.80
【答案】C 解析:,当时,,此时系数.故选C.
(2018·新课标Ⅲ,理8)某群体中的每位成品使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )
A.0.7 B.0.6 C.0.4 D.0.3
【答案】B解析:由,∴,∴,解之得,由,有.
(2018·新课标Ⅲ,文5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4 C.0.6 D.0.7
【答案】B解析:由题意.故选B.
(2017·新课标Ⅰ,文2)为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:)分别为,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A. 的平均数 B. 的标准差
C. 的最大值 D. 的中位数
解:一组样本数据的方差与标准差反映了这组样本数据的稳定程度,故选B
(2017·新课标Ⅰ,理2文4)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
A. B. C. D.
【答案】B 解析:设正方形边长为,则圆半径为,则正方形的面积为,圆的面积为,图中黑色部分的概率为,则此点取自黑色部分的概率为,故选B;
(2017·新课标Ⅰ,理6)展开式中的系数为( )
A.15 B.20 C.30 D.35
【解析】,对的项系数为,
对的项系数为,∴的系数为,故选C;
(2017·新课标Ⅱ,理6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A.12种 B.18种 C.24种 D.36种
【答案】D 解析:解法一:将三人分成两组,一组为三个人,有种可能,另外一组从三人在选调一人,有种可能;两组前后在排序,在对位找工作即可,有种可能;共计有36种可能.
(2017·新课标Ⅱ,文11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B. C. D.
【答案】D解析:如下表所示,表中的点横坐标表 示第一次取到的数,纵坐标表示第二次取到的数,总计有25种情况,满足条件的有10种,所以所求概率为.
(2017·新课标Ⅲ,文理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( ).
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月份
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
【答案】A解析:由图易知月接待客量是随月份的变化而波动的,有上升也有下降,所以A答案错误.
(2017·新课标Ⅲ,理4)的展开式中的系数为( ).
A. B. C. D.
解析 由二项式定理可得,原式展开中含的项为,则的系数为40,故选C.
(2016·新课标Ⅰ,4)某公司的班车在,,发车,小明在至之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是
(A) (B) (C) (D)
【答案】B 解析:如图所示,画出时间轴:
小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率.故选B.
(2016·新课标Ⅰ,文3)为美化环境,从红、黄、白、紫种颜色的花中任选种花种在一个花坛中,余下的种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ).
A. B. C. D.
【答案】C. 解析: 只需考虑分组即可,分组(只考虑第一个花坛中的两种花)情况为(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共种情况,其中符合题意的情况有种,因此红色和紫色的花不在同一花坛的概率是.故选C.
(2016·新课标Ⅱ,理5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18 C.12 D.9
【答案】B 解析:有种走法,有种走法,由乘法原理知,共种走法,故选B.
(2016·新课标Ⅱ,理10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )
A. B. C. D.
【答案】C 解析:由题意得:在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知,∴,故选C.
(2016·新课标Ⅱ,文8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒. 若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )
A. B. C. D.
【答案】B解析:至少需要等待15秒才出现绿灯的概率为,故选B.
(2016·新课标Ⅲ,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为,B点表示四月的平均最低气温约为.下面叙述不正确的是
A. 各月的平均最低气温都在以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于的月份有5个
【答案】D 解析:从图像中可以看出平均最高气温高于的月份有七月、八月,六月为左右,故最多3个.
(2016·新课标Ⅲ,文4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为,点表示四月的平均最低气温约为.下面叙述不正确的是( )
A.各月的平均最低气温都在以上 B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20℃的月份有5个
【答案】D 解析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中各月份的平均最高气温,结合所提供的四个选项,可以确定D是不正确的,因为从图中可以看出:平均最高气温高于只有7、8两个月份.故选D.
(2016·新课标Ⅲ,文5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )
A. B. C. D.
【答案】C 解析:前2位共有种可能,其中只有1种是正确的密码,所求概率为.选C.
(2015·新课标Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
(A)0.648 (B)0.432 (C)0.36 (D)0.312
【答案】A 解析:该同学通过测试的概率为,或,选(A).
(2015·新课标Ⅰ,理10)的展开式中,的系数为( )
A.10 B.20 C.30 D.60
解析:在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取,故的系数为.
另解:,含的项,其中中含的项为,所以的系数为,故选C.
(2015·新课标Ⅰ,文4)如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A. B. C. D.
解:选C,从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,1种,故所求概率为,故选C
(2015·新课标Ⅱ,文理3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )
A.逐年比较,2008年减少二氧化碳排放量的效果最显著
B.2007年我国治理二氧化碳排放显现成效
C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势
D.2006年以来我国二氧化碳年排放量与年份正相关
【答案】D解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈减少趋势,所以二氧化硫排放量与年份负相关,故选D.
(2014·新课标Ⅰ,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )
. . . .
【答案】D 解析:4位同学各自在周六、周日两天中任选一天参加公益活动共有种,
周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有种;②每天2人有种,则周六、周日都有同学参加公益活动的概率为;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为;选D.
(2014·新课标Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75 C.0.6 D.0.45
【答案】A 解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则.
(2013·新课标Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(  ).
A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样
【答案】C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.
(2013·新课标Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=(  )
A.5 B.6 C.7 D.8
答案:B
解析:由题意可知,a=,b=,又∵13a=7b,∴,
即.解得m=6.故选B.
(2013·新课标Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(  ).
A. B. C. D.
解析:选B. 由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为.
(2013·新课标Ⅱ,理5)已知的展开式中的系数为5,则( )
A. B. C. D.
(2013·5)D解析:因为(1+x)5的二项展开式的通项为(0≤r≤5,r∈Z),则含x2的项为+ax·=(10+5a)x2,所以10+5a=5,a=-1. 故选D.
(2012·新课标Ⅰ,2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A.12种 B.10种 C.9种 D.8种
【答案】A 解析:先安排甲组,共有种,再安排乙组,将剩余的1名教师和2名学生安排到乙组即可,共有1种,根据乘法原理得不同的安排方案共有12种,故选择A。
(2012·新课标Ⅰ,文3)在一组样本数据(,),(,),…,(,)(,,,…,不全相等)的散点图中,若所有样本点(,)(=1,2,…,)都在直线上,则这组样本数据的样本相关系数为( )
A.-1 B.0 C. D.1
【解析】因为中,,所以样本相关系数,又所有样本点(,)(=1,2,…,)都在直线上,所以样本相关系数,故选择D。
(2011·新课标Ⅰ,理4文6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
(A) (B) (C) (D)
【答案】A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A
(2011·新课标Ⅰ,理8)的展开式中各项系数的和为2,则该展开式中常数项为( )
A.-40 B.-20 C.20 D.40
解析1.令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D
解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.
故常数项==-40+80=40
二、填空题
(2023·新高考Ⅰ,13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).
【答案】64
【解析】(1)当从8门课中选修2门,则不同的选课方案共有种;
(2)当从8门课中选修3门,
①若体育类选修课1门,则不同的选课方案共有种;
②若体育类选修课2门,则不同的选课方案共有种;
综上所述:不同选课方案共有种.
故答案为:64.
(2022·新高考Ⅰ,13)的展开式中的系数为________________(用数字作答).
【答案】-28
【解析】因为,所以的展开式中含的项为,的展开式中的系数为-28.
(2022·新高考Ⅱ,13)已知随机变量X服从正态分布,且,则____________.
【答案】##.
【解析】
【分析】根据正态分布曲线的性质即可解出.
【详解】因为,所以,因此.
故答案为:.
(2022·全国甲卷,理15)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
【答案】.
【解析】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
(2022·全国乙卷,理13)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
【答案】##0.3
【解析】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
其中,甲、乙都入选的选法有3种,故所求概率.
故答案为:.
解法二:从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为,所以甲、乙都入选的概率
故答案为:
(2022·全国乙卷,文14)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
【答案】
【解析】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
其中,甲、乙都入选的选法有3种,故所求概率.
故答案为:.
解法二:从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为,所以甲、乙都入选的概率
故答案为:
(2020·全国卷Ⅱ,理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
【答案】
【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,先取2名同学看作一组,选法有:,
现在可看成是3组同学分配到3个小区,分法有:,
根据分步乘法原理,可得不同的安排方法种
故答案为:.
(2020·全国卷Ⅲ,理14)的展开式中常数项是__________(用数字作答).
【答案】
【解析】,其二项式展开通项:
当,解得,的展开式中常数项是:.
故答案为:.
(2019·全国卷Ⅰ,理15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
【答案】 解析:甲队要以,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:.
(2019·全国卷Ⅱ,理13文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.
【答案】 解析: .
(2018·新课标Ⅰ,理15) 从名女生,名男生中选人参加科技比赛,且至少有名女生入选,则不同的选法共有 种(用数字填写答案).
【答案】 解析:方法一:一类:名女生,名男生,则有种;二类:名女生,名男生,则有种;共有种.
方法二:共有种选法,没有女生的选法有:种,至少有一名女生的选法的种数.
(2017·新课标Ⅱ,13)一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则 .
【答案】 解析:随机变量,.
(2018·新课标Ⅲ,文14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
【答案】分层抽样 解析:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.
(2016·15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .
【答案】 解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;
若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3).
(2016·新课标Ⅰ,理14)的展开式中,的系数是_______.(用数字填写答案)
【解析】:设展开式的第项为,,∴.
当时,,即,故答案为10.
(2015·新课标Ⅱ,理15)的展开式中x的奇数次幂项的系数之和为32,则a =_______.
(2015·15)3解析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.
(2014·新课标Ⅰ,理13)的展开式中的系数为 .(用数字填写答案)
【解析】:展开式的通项为,
∴,,∴的展开式中的项为,故系数为20.
(2014·新课标Ⅰ,文13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.
解:设数学书为1,2,语文书为A,则所有的排法有(1,2,A),(1,A,2),(2,1, A),(2, A,1),(A,1,2),(A,2,1)共6 种,其中2 本数学书相邻的情况有4 种情况,故所求概率为.
(2014·新课标Ⅱ,文13)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.
【答案】解析:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为.
(2014·新课标Ⅱ,理13)的展开式中,的系数为15,则a =________.
(2014·13)解析:∵,∴,即,∴,解得.
(2013·新课标Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.
【答案】解析:该事件基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},共有10个,记A=“其和为5”={(1,4),(2,3)},有2个,∴P(A)=.
(2013·新课标Ⅱ,14)从个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=______.
【答案】8 解析:从1,2,…,n中任取两个不同的数共有种取法,两数之和为5的有(1,4),(2,3),共2种,所以,即,亦即n2-n-56=0,解得n=8.
(
元件
1
元件
2
元件
3
)(2012·新课标Ⅰ,15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N(1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .
【答案】 解析:由已知可得,三个电子元件使用寿命超过1000小时的概率均为,所以该部件的使用寿命超过1000小时的概率为.
三、解答题
(2023·新高考Ⅰ,21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
(1)求第2次投篮的人是乙的概率;
(2)求第次投篮的人是甲的概率;
(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
【答案】(1)
(2)
(3)
【解析】(1)记“第次投篮的人是甲”为事件,“第次投篮的人是乙”为事件,
所以,
.
(2)设,依题可知,,则

即,
构造等比数列,
设,解得,则,
又,所以是首项为,公比为的等比数列,
即.
(3)因为,,
所以当时,,
故.
(2023·新高考Ⅱ,19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率%时,求临界值c和误诊率;
(2)设函数,当时,求的解析式,并求在区间的最小值.
【答案】(1),;
(2),最小值为.
【解析】(1)依题可知,左边图形第一个小矩形的面积为,所以,
所以,解得:,

(2)当时,

当时,
,
故,
所以在区间的最小值为.
(2023·全国甲卷,理19)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:
对照组
实验组
(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
附:
0.100 0.050 0.010
2.706 3.841 6.635
【答案】(1)分布列见解析,
(2)(i);列联表见解析,(ii)能
【解析】(1)依题意,的可能取值为,
则,,,
所以分布列为:
故.
(2)(i)依题意,可知这40只小白鼠体重增量的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,观察数据可得第20位为,第21位数据为,
所以,
故列联表为:
合计
对照组 6 14 20
实验组 14 6 20
合计 20 20 40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
(2023·全国甲卷,文19) 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
对照组
试验组
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
【解析】(1)试验组样本平均数为:
(2)(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,
由原数据可得第11位数据为,后续依次为,
故第20位为,第21位数据为,
所以,
故列联表为:
合计
对照组 6 14 20
试验组 14 6 20
合计 20 20 40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.
(2023·全国乙卷,理17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
【答案】(1),;(2)认为甲工艺处理后橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
【解析】(1),


的值分别为: ,

(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
(2023·全国乙卷,文17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
【解析】(1),


的值分别为: ,

(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
(2022·新高考Ⅰ,20)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好 良好
病例组 40 60
对照组 10 90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)由已知,
又,,
所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
(2)(i)因为,
所以,所以,
(ii) 由已知,,又,,
所以.
(2022·新高考Ⅱ,19)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
【解析】(1)平均年龄
(岁).
(2)设{一人患这种疾病的年龄在区间},所以

(3)设“任选一人年龄位于区间[4050)”,“从该地区中任选一人患这种疾病”,
则由已知得:,
则由条件概率公式可得,从该地区中任选一人,若此人的年龄位于区间,此人患这种疾病的概率为.
(2022·全国甲卷,理19)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
【解析】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为

(2)依题可知,的可能取值为,所以,
,



即的分布列为
0 10 20 30
0.16 0.44 0.34 0.06
期望.
(2022·全国甲卷,文17) 甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
【解析】(1)根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则;
B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则.
A家公司长途客车准点的概率为;B家公司长途客车准点的概率为.
(2)列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
=,
根据临界值表可知,有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
(2022·全国乙卷,文理19) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
根部横截面积 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6
材积量 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
【解析】(1)样本中10棵这种树木的根部横截面积的平均值,样本中10棵这种树木的材积量的平均值,据此可估计该林区这种树木平均一棵的根部横截面积为,
平均一棵的材积量为.
(2)
则.
(3)设该林区这种树木的总材积量的估计值为,又已知树木的材积量与其根部横截面积近似成正比,
可得,解之得.
则该林区这种树木的总材积量估计为.
(2021·新高考Ⅰ,18)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
【解析】(1)由题可知,的所有可能取值为,,.



所以的分布列为
(2)由(1)知,.
若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.



所以.
因为,所以小明应选择先回答类问题.
(2021·新高考Ⅱ,21)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
(1)已知,求;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
(3)根据你的理解说明(2)问结论的实际含义.
【解析】(1).
(2)设,
因为,故,
若,则,故.

因为,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
若,因为在为增函数且,
而当时,因为在上为减函数,故,
故为的一个最小正实根,
若,因为且在上为减函数,故1为的一个最小正实根,
综上,若,则.
若,则,故.
此时,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
而,故,
又,故在存在一个零点,且.
所以为的一个最小正实根,此时,
故当时,.
(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.
(2021·全国甲卷,文理17)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 二级品 合计
甲机床 150 50 200
乙机床 120 80 200
合计 270 130 400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
(2021·全国乙卷,文理17)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7
新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【解析】(1),


.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
(2020·新高考Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:
SO2 PM2.5 [0,50] (50,150] (150,475]
[0,35] 32 18 4
(35,75] 6 8 12
(75,115] 3 7 10
(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;
(2)根据所给数据,完成下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75]
(75,115]
(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?
附:K2=
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率P==0.64;
(2)根据所给数据,可得下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75] 64 16
(75,115] 10 10
(3)根据列联表中的数据可得

因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
(2020·全国卷Ⅰ,理19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
【解析】(1)记事件甲连胜四场,则;
(2)记事件为甲输,事件为乙输,事件为丙输,
则四局内结束比赛的概率为,
所以,需要进行第五场比赛的概率为;
(3)记事件为甲输,事件为乙输,事件为丙输,记事件甲赢,记事件丙赢,
则甲赢的基本事件包括:、、、、、、、,
所以,甲赢的概率为.
由对称性可知,乙赢的概率和甲赢的概率相等,
所以丙赢的概率为.
方法2:情形一:进行四场比赛丙获胜,概率
情形二:进行五场比赛,意味着丙一定会输掉一场比赛,且一定赢下第五场比赛.
①丙第二场输,则第三场不打,第四场第五场均要赢,此时概率为;
②丙第三场输,则第二场赢,第四场不打,第五场赢,此时概率为
③丙第四场输,则第二场赢,第三场赢,第五场赢(可能第四场对手未尝败绩,另一对手已淘汰,此时
丙仍奋战第五场),此时概率为
综上所述,丙最终获胜的概率为.
(2020·全国卷Ⅰ,文17)某厂接受了一项加工业务,加工出来产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
【解析】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;
(2)甲分厂加工件产品的总利润为元,
所以甲分厂加工件产品的平均利润为元每件;
乙分厂加工件产品的总利润为
元,
所以乙分厂加工件产品的平均利润为元每件.
故厂家选择甲分厂承接加工任务.
(2020·全国卷Ⅱ,文理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,=1.414.
【解析】(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本的相关系数为:
(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.
(2020·全国卷Ⅲ,理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
(2020·全国卷Ⅲ,文18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
【解析】(1)由频数分布表可知,该市一天空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
(2019·全国卷Ⅰ,理21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
21.解:X的所有可能取值为.
所以的分布列为
(2)(i)由(1)得.
因此,故,即
.
又因为,所以为公比为4,首项为的等比数列.
(ii)由(i)可得
.
由于,故,所以
表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.
(2019·全国卷Ⅰ,文17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 不满意
男顾客 40 10
女顾客 30 20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
解:(1)由调查数据,男顾客中对该商场服务满意的比率为,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2).
由于,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
(2019·全国卷Ⅱ,理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
18.解:(1)X=2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.
(2)X=4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.
因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.
【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件Ak(k=1,2,3,…),
则P(X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P()
=0.5×0.4+0.5×0.6=0.5.
(2)P(X=4且甲获胜)=P(A2A2A4)+P()
=P()P(A2)P(A3)P(A4)+P(A1)P()P(A3)P(A4)
=(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.
(2019·全国卷Ⅱ,文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组
企业数 2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:.
19.解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为.
产值负增长的企业频率为.
用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.
(2),


所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.
(2019·全国卷Ⅲ,文理17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值代表).
17.解:(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.
(2)甲离子残留百分比的平均值的估计值为
2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
(2018·新课标Ⅰ,理20) 某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
⑴记20件产品中恰有2件不合格品的概率为,求的最大值点;
⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
解析:(1)解:(1)20件产品中恰有2件不合格品的概率为.因此
.
令,得.当时,;当时,.
所以的最大值点为.
(2)由(1)知,.
(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.
所以.
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
由于,故应该对余下的产品作检验.
(2018·新课标Ⅰ,文19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量
频数 1 3 2 4 9 26 5
使用了节水龙头50天的日用水量频数分布表
日用 水量
频数 1 5 13 10 16 5
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
解:(1)
(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为
0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,
因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.
(3)该家庭未使用节水龙头50天日用水量的平均数为

该家庭使用了节水龙头后50天日用水量的平均数为

估计使用节水龙头后,一年可节省水.
(2018·新课标Ⅱ,理18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测改地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年数据(时间变量的值依次为)建立模型①::根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).
(2)利用模型②得到的预测值更可靠. 理由如下:
(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
(2018·新课标Ⅱ,文18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测改地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年数据(时间变量的值依次为)建立模型①::根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).
(2)利用模型②得到的预测值更可靠. 理由如下:
(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
(2018·新课标Ⅲ,理18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
⑴根据茎叶图判断哪种生产方式的效率更高?并说明理由;
⑵求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 不超过
第一种生产方式
第二种生产方式
⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?
附:,.
解析:(1)第一种生产方式的平均数为,第二种生产方式平均数为,
∴,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.
(2)由茎叶图数据得到,∴列联表为
(3),∴有
的把握认为两种生产方式的效率有差异.
(2018·新课标Ⅲ,文18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
⑴根据茎叶图判断哪种生产方式的效率更高?并说明理由;
⑵求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 不超过
第一种生产方式
第二种生产方式
⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?
附:,.
18.【答案】见解析
解析:
(1)第一种生产方式的平均数为,第二种生产方式平均数为,∴
,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.
(2)由茎叶图数据得到,∴列联表为
(3),∴有
的把握认为两种生产方式的效率有差异.
(2017·新课标Ⅰ,理19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求
P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ0.997416≈0.9592,.
解析:(1)由题可知尺寸落在之内的概率为,落在之外的概率为.,
,由题可知,

(2)(i)尺寸落在之外的概率为,由正态分布知尺寸落在之外为小概率事件,因此上述监控生产过程的方法合理.
(ii), ,
, ,需对当天的生产过程检查.
因此剔除,剔除数据之后:.

(2017·新课标Ⅰ,文19)为了监控某种零件的一条生产线的生产中小学教育资源及组卷应用平台
2011年—2023年新课标全国卷数学分类汇编
(含全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷、新高考Ⅱ卷)
(附详细答案)
编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定规律.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.
本资料是根据全国卷的特点精心编写,共包含9个专题,分别是:
1.集合、逻辑、不等式 2.复数 3.平面向量 4.函数与导数 5.三角函数与解三角形
6.数列 7.立体几何 8.解析几何 9.概率与统计
2011年—2023年新课标全国卷数学试题分类汇编
9.概率与统计
一、选择题
(2023·新高考Ⅰ,9多选题)有一组样本数据,其中是最小值,是最大值,则( )
A. 的平均数等于的平均数
B. 的中位数等于的中位数
C. 的标准差不小于的标准差
D. 的极差不大于的极差
(2023·新高考Ⅱ,3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种 B.种 C.种 D.种
(2023·新高考Ⅱ,12多选)在信道内传输0,1信号,信号传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为
C.采用三次传输方案,若发送1,则译码为1的概率为
D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
(2023·全国甲卷,理6)某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A.0.8 B.0.6 C.0.5 D.0.4
(2023·全国甲卷,理9)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )
A.120 B.60 C.30 D.20
(2023·全国甲卷,文4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )
A. B. C. D.
(2023·全国乙卷,理5文7)设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )
A. B. C. D.
(2023·全国乙卷,理7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )
A.30种 B.60种 C.120种 D.240种
(2023·全国乙卷,文9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )
A. B. C. D.
(2022·新高考Ⅰ,5)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
(2022·新高考Ⅱ,5)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A. 12种 B. 24种 C. 36种 D. 48种
(2022·全国甲卷,文理2)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于
B.讲座后问卷答题的正确率的平均数大于
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
(2022·全国乙卷,理10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大
(2022·全国乙卷,文4)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
则下列结论中错误的是( )
A.甲同学周课外体育运动时长的样本中位数为7.4
B.乙同学周课外体育运动时长的样本平均数大于8
C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4
D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6
(2021·新高考Ⅰ,8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立
(2021·新高考Ⅰ,9)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A. 两组样本数据的样本平均数相同 B. 两组样本数据的样本中位数相同
C. 两组样本数据的样本标准差相同 D. 两组样数据的样本极差相同
(2021·新高考Ⅱ,6)某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A. 越小,该物理量在一次测量中在的概率越大
B. 越小,该物理量在一次测量中大于10的概率为0.5
C. 越小,该物理量在一次测量中小于9.99与大于10.01的概率相等
D. 越小,该物理量在一次测量中落在与落在的概率相等
(2021·新高考Ⅱ,9)下列统计量中,能度量样本的离散程度的是( )
A. 样本的标准差 B. 样本的中位数
C. 样本的极差 D. 样本的平均数
(2021·新高考Ⅱ,12)设正整数,其中,记.则( )
A. B. C. D.
(2021·全国甲卷,文理2)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C. 估计该地农户家庭年收入的平均值不超过6.5万元
D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
(2021·全国甲卷,理10) 将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
(2021·全国甲卷,文10)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. 0.3 B. 0.5 C. 0.6 D. 0.8
(2021·全国乙卷,理6) 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A. 60种 B. 120种 C. 240种 D. 480种
(2020·新高考Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种 B.90种 C.60种 D.30种
(2020·新高考Ⅰ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56% C.46% D.42%
(2020·新高考Ⅰ,12)(多选题)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
(2020·全国卷Ⅰ,文理5)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B. C. D.
(2020·全国卷Ⅰ,理8)的展开式中x3y3的系数为( )
A.5 B.10 C.15 D.20
(2020·全国卷Ⅰ,文4)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )
A. B. C. D.
(2020·全国卷Ⅱ,理3,文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
(2020·全国卷Ⅱ,文3)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤iA.5 B.8 C.10 D.15
(2020·全国卷Ⅲ,理3)在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
(2020·全国卷Ⅲ,文3)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
A.0.01 B.0.1 C.1 D.10
(2019·全国卷Ⅰ,理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A. B. C. D.
(2019·全国卷Ⅰ,文6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生 B.200号学生 C.616号学生 D.815号学生
(2019·全国卷Ⅱ,理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数 B.平均数 C.方差 D.极差
(2019·全国卷Ⅱ,文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
A. B. C. D.
(2019·全国卷Ⅲ,理3,文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6 C.0.7 D.0.8
(2019·全国卷Ⅲ,理4)的展开式中的系数为( )
A.12 B.16 C.20 D.24
(2019·全国卷Ⅲ,文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
(2018·新课标Ⅰ,文理3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下列选项中不正确的是:
A.新农村建设后,种植收入减少。
B. 新农村建设后,其他收入增加了一倍以上。
C. 新农村建设后,养殖收入增加了一倍。
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
(2018·新课标Ⅰ,理10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则( )
A. B. C. D.
(2018·新课标Ⅱ,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B. C. D.
(2018·新课标Ⅱ,文5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )
A. B. C. D.
(2018·新课标Ⅲ,理5)的展开式中的系数为( )
A.10 B.20 C.40 D.80
(2018·新课标Ⅲ,理8)某群体中的每位成品使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )
A.0.7 B.0.6 C.0.4 D.0.3
(2018·新课标Ⅲ,文5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4 C.0.6 D.0.7
(2017·新课标Ⅰ,理2文4)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
A. B. C. D.
(2017·新课标Ⅰ,理6)展开式中的系数为( )
A.15 B.20 C.30 D.35
(2017·新课标Ⅰ,文2)为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:)分别为,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A. 的平均数 B. 的标准差
C. 的最大值 D. 的中位数
(2017·新课标Ⅱ,理6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A.12种 B.18种 C.24种 D.36种
(2017·新课标Ⅱ,文11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B. C. D.
(2017·新课标Ⅲ,文理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( ).
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月份
D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
(2017·新课标Ⅲ,4)的展开式中的系数为( ).
A. B. C. D.
(2016·新课标Ⅰ,理4)某公司的班车在,,发车,小明在至之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是
(A) (B) (C) (D)
(2016·新课标Ⅰ,文3)为美化环境,从红、黄、白、紫种颜色的花中任选种花种在一个花坛中,余下的种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ).
A. B. C. D.
(2016·新课标Ⅱ,理5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18 C.12 D.9
(2016·新课标Ⅱ,理10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )
A. B. C. D.
(2016·新课标Ⅱ,文8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒. 若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )
A. B. C. D.
(2016·新课标Ⅲ,文理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为,B点表示四月的平均最低气温约为.下面叙述不正确的是( )
A. 各月的平均最低气温都在以上
B. 七月的平均温差比一月的平均温差大
C. 三月和十一月的平均最高气温基本相同
D. 平均最高气温高于的月份有5个
(2016·新课标Ⅲ,文5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )
A. B. C. D.
(2015·新课标Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
(A)0.648 (B)0.432 (C)0.36 (D)0.312
(2015·新课标Ⅰ,10)的展开式中,的系数为( )
A.10 B.20 C.30 D.60
(2015·新课标Ⅰ,文4)如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A. B. C. D.
(2015·新课标Ⅱ,文理3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著.
B.2007年我国治理二氧化硫排放显现成效.
C.2006年以来我国二氧化硫年排放量呈减少趋势.
D.2006年以来我国二氧化硫年排放量与年份正相关.
(2014·新课标Ⅰ,理5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )
. . . .
(2014·新课标Ⅱ,理5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75 C.0.6 D.0.45
(2013·新课标Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(  ).
A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样
(2013·新课标Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=(  )
A.5 B.6 C.7 D.8
(2013·新课标Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(  ).
A. B. C. D.
(2013·新课标Ⅱ,理5)已知的展开式中的系数为5,则( )
A. B. C. D.
(2013·新课标Ⅰ,文3)在一组样本数据(,),(,),…,(,)(,,,…,不全相等)的散点图中,若所有样本点(,)(=1,2,…,)都在直线上,则这组样本数据的样本相关系数为( )
A.-1 B.0 C. D.1
(2012·新课标Ⅰ,理2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A.12种 B.10种 C.9种 D.8种
(2011·新课标Ⅰ,理4文6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
(A) (B) (C) (D)
(2011·新课标Ⅰ,理8)的展开式中各项系数的和为2,则该展开式中常数项为( )
A.-40 B.-20 C.20 D.40
二、填空题
(2023·新高考Ⅰ,13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).
(2022·新高考Ⅰ,13)的展开式中的系数为________________(用数字作答).
(2022·新高考Ⅱ,13)已知随机变量X服从正态分布,且,则____________.
(2022·全国甲卷,理15)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
(2022·全国乙卷,理13)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
(2022·全国乙卷,文14)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.
(2020·全国卷Ⅱ,理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
(2020·全国卷Ⅲ,理14)的展开式中常数项是__________(用数字作答).
(2019·全国卷Ⅰ,理15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
(2019·全国卷Ⅱ,理13文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.
(2018·新课标Ⅰ,理15) 从名女生,名男生中选人参加科技比赛,且至少有名女生入选,则不同的选法共有 种(用数字填写答案).
(2018·新课标Ⅲ,文14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.
(2017·新课标Ⅱ,理13)一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则 .
(2016·新课标Ⅰ,14)的展开式中,的系数是_______.(用数字填写答案)
(2015·新课标Ⅱ,15)的展开式中x的奇数次幂项的系数之和为32,则a =_______.
(2014·新课标Ⅰ,13)的展开式中的系数为 .(用数字填写答案)
(2014·新课标Ⅰ,文13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.
(2014·新课标Ⅱ,文13)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.
(2014·新课标Ⅱ,13)的展开式中,的系数为15,则a =________.
(2013·新课标Ⅱ,理14)从个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=______.
(2013·新课标Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.
(
元件
1
元件
2
元件
3
)(2012·新课标Ⅰ,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N(1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .
三、解答题
(2023·新高考Ⅰ,21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
(1)求第2次投篮的人是乙的概率;
(2)求第次投篮的人是甲的概率;
(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
(2023·新高考Ⅱ,19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率%时,求临界值c和误诊率;
(2)设函数,当时,求的解析式,并求在区间的最小值.
(2023·全国甲卷,理19)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:
对照组
实验组
(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
附:
0.100 0.050 0.010
2.706 3.841 6.635
(2023·全国甲卷,文19) 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(1)计算试验组的样本平均数;
(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表
对照组
试验组
(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
(2023·全国乙卷,理17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
(2023·全国乙卷,文17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
试验序号 1 2 3 4 5 6 7 8 9 10
伸缩率 545 533 551 522 575 544 541 568 596 548
伸缩率 536 527 543 530 560 533 522 550 576 536
记,记样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
(2022·新高考Ⅰ,20)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好 良好
病例组 40 60
对照组 10 90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050 0.010 0.001
k 3.841 6.635 10.828
(2022·新高考Ⅱ,19)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
(2022·全国甲卷,理19)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
(2022·全国甲卷,文17) 甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
0.100 0.050 0.010
2.706 3.841 6.635
(2022·全国乙卷,文理19) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
根部横截面积 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6
材积量 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
(2021·新高考Ⅰ,18)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
(2021·新高考Ⅱ,21)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
(1)已知,求;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
(3)根据你的理解说明(2)问结论的实际含义.
(2021·全国甲卷,文理17)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 二级品 合计
甲机床 150 50 200
乙机床 120 80 200
合计 270 130 400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
(2021·全国乙卷,文理17)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7
新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
(2020·新高考Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:
SO2 PM2.5 [0,50] (50,150] (150,475]
[0,35] 32 18 4
(35,75] 6 8 12
(75,115] 3 7 10
(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;
(2)根据所给数据,完成下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75]
(75,115]
(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?
附:K2=
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2020·全国卷Ⅰ,理19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.
(2020·全国卷Ⅰ,文17)某厂接受了一项加工业务,加工出来产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
(2020·全国卷Ⅱ,理18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,=1.414.
(2020·全国卷Ⅱ,文18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,=1.414.
(2020·全国卷Ⅲ,理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2020·全国卷Ⅲ,文18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2019·全国卷Ⅰ,理21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
(2019·全国卷Ⅰ,文17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 不满意
男顾客 40 10
女顾客 30 20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2019·全国卷Ⅱ,理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
(2019·全国卷Ⅱ,文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组
企业数 2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:.
(2019·全国卷Ⅲ,理17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值代表).
(2019·全国卷Ⅲ,文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同。经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
(2018·新课标Ⅰ,理20) 某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
⑴记20件产品中恰有2件不合格品的概率为,求的最大值点;
⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
(2018·新课标Ⅰ,文19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量
频数 1 3 2 4 9 26 5
使用了节水龙头50天的日用水量频数分布表
日用 水量
频数 1 5 13 10 16 5
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
(2018·新课标Ⅱ,理18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测改地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年数据(时间变量的值依次为)建立模型①::根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
(2018·新课标Ⅱ,文18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测改地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年数据(时间变量的值依次为)建立模型①::根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
(2018·新课标Ⅲ,文理18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
⑴根据茎叶图判断哪种生产方式的效率更高?并说明理由;
⑵求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 不超过
第一种生产方式
第二种生产方式
⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?
附:,.
(2017·新课标Ⅰ,理19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求
P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ0.997416≈0.9592,.
(2017·新课标Ⅰ,文19)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序 1 2 3 4 5 6 7 8
零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
抽取次序 9 10 11 12 13 14 15 16
零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得,,
,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求 (i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi,yi)(i=1,2,…,n)的相关系数,.
(2017·新课标Ⅱ,理18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
(2017·新课标Ⅱ,文19)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
附:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
(2017·新课标Ⅲ,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为瓶;如果最高气温位于区间,需求量为瓶;如果最高气温低于20,需求量为瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
天数 2 16 36 25 7 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?
(2017·新课标Ⅲ,文18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为瓶;如果最高气温位于区间,需求量为瓶;如果最高气温低于20,需求量为瓶.
为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布
表:
最高气温
天数 2 16 36 25 7 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过瓶的概率;
(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为瓶时,写出的所有可能值,并估计大于零的概率.
(2016·新课标Ⅰ,19)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求X的分布列;
(Ⅱ)若要求,确定的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
(2016·新课标Ⅰ,文19)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.
记表示台机器在三年使用期内需更换的易损零件数,表示台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(1)若,求与的函数解析式;
(2)若要求 “需更换的易损零件数不大于”的频率不小于,求的最小值;
(3)假设这台机器在购机的同时每台都购买个易损零件,或每台都购买个易损零件,分别计算这台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买个还是个易损零件?
(2016·新课标Ⅱ,18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 0 1 2 3 4 5
保费 0.85a a 1.25a 1.5a 1.75a 2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 0 1 2 3 4 5
概率 0.30 0.15 0.20 0.20 0.10 0. 05
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
(2016·新课标Ⅱ,文18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 0 1 2 3 4 5
保费 0.85a a 1.25a 1.5a 1.75a 2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 0 1 2 3 4 5
频率 60 50 30 30 20 10
(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”. 求P(A)的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求P(B)的估计值;
(Ⅲ)求续保人本年度的平均保费估计值.
(2016·新课标Ⅲ,18)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:,,,≈2.646.
参考公式:
回归方程中斜率和截距的最小二乘估计公式分别为:
(2016·新课标Ⅲ,文18)下图是我国年至年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码分别对应年份.
(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量.
附注: 参考数据:,,,.
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为:,
(2015·新课标Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量()数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 563 6.8 289.8 1.6 1469 108.8
表中,
(Ⅰ)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及数据,建立关于的回归方程;
(III)已知这种产品的年利润与,的关系为,根据(Ⅱ)的结果回答下列问题:
(i)年宣传费=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.
(2015·新课标Ⅰ,文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi,和年销售量yi(i=1,2,3,…,8)的数据作了初步处理,得到下面的散点图及一些统计量的值,表中
46.6 563 6.8 289.8 1.6 1469 108.8
(Ⅰ)根据散点图判断,y=a+bx与,哪一个宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(Ⅱ)的结果回答下列问题:
(1)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(2)当年宣传费x为何值时,年利润的预报值最大?
(2015·新课标Ⅱ,18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区 62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89
B地区 73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 低于70分 70分到89分 不低于90分
满意度等级 不满意 满意 非常满意
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
(2015·新课标Ⅱ,文18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A地区用户满意评分的频率分布直方图和B地区用户满意度评分的频数分布表.
B地区用户满意度评分的频数分布表
满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100)
频数 2 8 14 10 6
(Ⅰ)在答题卡上作出B地区用户满意度评分的频数分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).
(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级;
满意度评分 低于70分 70分到80分 不低于90分
满意度等级 不满意 满意 非常满意
估计哪个地区用户的满意度等级为不满意的概率大?说明理由.
(2014·新课标Ⅰ,18)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求.
附:≈12.2.若~,则=0.6826,=0.9544.
(2014·新课标Ⅰ,文18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)
频数 6 26 38 22 8
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
(2014·新课标Ⅱ,理19)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 2007 2008 2009 2010 2011 2012 2013
年份代号t 1 2 3 4 5 6 7
人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
(2014·新课标Ⅱ,文19)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民. 根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:
(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;
(Ⅱ)分别估计该市的市民对甲、乙部门的评分做于90的概率;
(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.
(2013·新课标Ⅰ,文18)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
(2013·新课标Ⅰ,19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
(
150
120
频率/组距
需求量/
140
130
100
110
)(2013·新课标Ⅱ,19)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如有图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为x的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100, 110),则取x=105,且x=105的概率等于需求量落入[100, 110)的概率),求利润T的数学期望.
(
150
120
频率/组距
需求量/
140
130
100
110
)(2013·新课标Ⅱ,文19)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如有图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为x的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.
(2012·新课标Ⅰ,文18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进17枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 14 15 16 17 18 19 20
频数 10 20 16 16 15 13 10
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,
求当天的利润不少于75元的概率。
(2012·新课标Ⅰ,理18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。
(1)若花店一天购进16枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 14 15 16 17 18 19 20
频数 10 20 16 16 15 13 10
以100天记录的各需求量的频率作为各需求量发生的概率。
①若花店一天购进16枝玫瑰花,表示当天的利润(单位:元),
求的分布列、数学期望及方差;
②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。
(2011·新课标Ⅰ,理19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]
频数 8 20 42 22 8
B配方的频数分布表
指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]
频数 4 12 42 32 10
(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为
从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)
(2011·新课标Ⅰ,文19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于的产品为优质品.现用两种新配方(分别成为配方和配方)做试验,各生产了件这样的产品,并测量了每件产品的质量指标值,得到了下面试验结果.
配方的频数分布表
指标值分组
频数
配方的频数分布表
指标值分组
频数
(1)分别估计用配方,配方生产的产品的优质品率;
(2)已知用配方生产的一件产品的利润(单位:元)
与其质量指标值的关系式为估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品平均一件的利润.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2011年—2023年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编
9.排列组合、概率统计(逐题解析版)
一、选择题
(2023·新高考Ⅰ,9多选题)BD【解析】对于选项A,如1、2、2、2、4的平均数不等于2、2、2、2的平均数,故错误;对于选项B,不妨设,的中位数为,的中位数为,所以B正确;对于选项C,的数据波动性更大,所以C错误;对于选项D,不妨设,则,所以,故正确.
(2023·新高考Ⅱ,3)【答案】D【解析】根据分层抽样的定义知初中部共抽取人,高中部共抽取,根据组合公式和分步计数原理则不同的抽样结果共有种.故选:D.
(2023·新高考Ⅱ,12多选)【答案】ABD【解析】对于A,依次发送1,0,1,则依次收到l,0,1的事件是发送1接收1、发送0接收0、发送1接收1的3个事件的积,它们相互独立,所以所求概率为,A正确;对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到l,0,1的事件,是发送1接收1、发送1接收0、发送1接收1的3个事件的积,它们相互独立,所以所求概率为,B正确;对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,它们互斥,由选项B知,所以所求的概率为,C错误;对于D,由选项C知,三次传输,发送0,则译码为0的概率,单次传输发送0,则译码为0的概率,而,
因此,即,D正确.故选:ABD
(2023·全国甲卷,理6)【答案】A【解析】同时爱好两项的概率为,记“该同学爱好滑雪”为事件,记“该同学爱好滑冰”为事件,则,所以.故选:.
(2023·全国甲卷,理9)【答案】B【解析】不妨记五名志愿者为,假设连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有种方法,
同理:连续参加了两天公益活动,也各有种方法,所以恰有1人连续参加了两天公益活动的选择种数有种.故选:B.
(2023·全国甲卷,文4)【答案】D【解析】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.
(2023·全国乙卷,理5文7)【答案】C【解析】因为区域表示以圆心,外圆半径,内圆半径的圆环,则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角,结合对称性可得所求概率.
(2023·全国乙卷,理7)【答案】C【解析】首先确定相同得读物,共有种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,根据分步乘法公式则共有种,故选:C.
(2023·全国乙卷,文9)【答案】A【解析】概率.故选:A
(2022·新高考Ⅰ,5)【答案】D【解析】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,若两数不互质,不同的取法有:,共7种,故所求概率.故选:D.
(2022·新高考Ⅱ,5)【答案】B【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,故选:B
(2022·全国甲卷,文理2)【答案】B【解析】讲座前中位数为,所以错;讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为,讲座前问卷答题的正确率的极差为,所以错.选:B.
(2022·全国乙卷,理10)【答案】D【解析】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为,则此时连胜两盘的概率为,则;
记该棋手在第二盘与乙比赛,且连胜两盘的概率为,

记该棋手在第二盘与丙比赛,且连胜两盘的概率为,


即,,则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;
与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D
(2022·全国乙卷,文4)【答案】C【解析】对于A选项,甲同学周课外体育运动时长的样本中位数为,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:
B选项结论正确.
对于C选项,甲同学周课外体育运动时长大于的概率的估计值,C选项结论错误.
对于D选项,乙同学周课外体育运动时长大于的概率的估计值,D选项结论正确.
(2021·新高考Ⅰ,8)【答案】B【解析】
故选:B
(2021·新高考Ⅰ,9)CD 【解析】A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确; 故选:CD
(2021·新高考Ⅱ,6)【答案】D【解析】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;
对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;
对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;
对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误. 故选:D.
(2021·新高考Ⅱ,9)【答案】AC【解析】由标准差定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.
(2021·新高考Ⅱ,12)【答案】ACD【解析】对于A选项,,,所以,,A选项正确;
对于B选项,取,,,
而,则,即,B选项错误;
对于C选项,,
所以,,

所以,,因此,,C选项正确;
对于D选项,,故,D选项正确. 故选:ACD.
(2021·全国甲卷,文理2)【答案】C 【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.
该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;
该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;
该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;
该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误. 综上,给出结论中不正确的是C. 故选:C.
(2021·全国甲卷,理10) 【答案】C【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.
(2021·全国甲卷,文10)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. 0.3 B. 0.5 C. 0.6 D. 0.8
【答案】C【解析】.
(2021·全国乙卷,理6) C 【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.
(2020·新高考Ⅰ,3)【答案】C 【解析】首先从名同学中选名去甲场馆,方法数有;然后从其余名同学中选名去乙场馆,方法数有;最后剩下的名同学去并场馆.故不同的安排方法共有种.
(2020·新高考Ⅰ,5)【答案】C 【解析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,则,,,所以,所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.
(2020·新高考Ⅰ,12)【答案】AC 【解析】对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,所以,当时,,当时,,两者相等,所以B选项错误.
对于C选项,若,则,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且().


由于,所以,所以,
所以,所以,所以D选项错误.故选:AC
(2020·全国卷Ⅰ,文理5)【答案】D【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.
(2020·全国卷Ⅰ,理8)【答案】C 【解析】展开式的通项公式为(且)
所以与展开式的乘积可表示为:

在中,令,可得:,该项中的系数为,
在中,令,可得:,该项中的系数为.
所以的系数为.
(2020·全国卷Ⅰ,文4)【答案】A 【解析】如图,从5个点中任取3个有,共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A
(2020·全国卷Ⅱ,理3文4)【答案】B【解析】由题意,第二天新增订单数为,故需要志愿者名.
(2020·全国卷Ⅱ,文3)C【解析】根据题意可知,原位大三和弦满足:.
∴;;;;.
原位小三和弦满足:.∴;;;;.故个数之和为10.
(2020·全国卷Ⅲ,理3)【答案】B 【解析】对于A选项,该组数据的平均数为,
方差为;
对于B选项,该组数据的平均数为,
方差为;
对于C选项,该组数据的平均数为,
方差为;
对于D选项,该组数据的平均数为,
方差为.
因此,B选项这一组的标准差最大.
故选:B.
(2020·全国卷Ⅲ,文3)【答案】C 【解析】因为数据的方差是数据的方差的倍,所以所求数据方差为.
(2019·全国卷Ⅰ,理6) A解析:一共有种可能,其中满足恰有3个阳爻的有种,故概率为。
(2019·全国卷Ⅰ,文6)【答案】C 解析:从1000名学生从中抽取一个容量为100的样本,系统抽样的分段间隔为,号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,设其数列为,则,当时,,即在第62组抽到616.
(2019·全国卷Ⅱ,理5)【答案】A 解析:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.
(2019·全国卷Ⅱ,文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
A. B. C. D.
【答案】B 解析:从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为.∴p.故选:B.
(2019·全国卷Ⅲ,理3文4)C解析:某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,
其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,所以,该校阅读过《西游记》的学生人数为70人,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为:。
(2019·全国卷Ⅲ,理4)【答案】A 解析:的通项公式为,利用通项公式求出,,的展开式中x3的系数:,故选A
法二:利用组合的性质,展开式中x3的系数为
(2019·全国卷Ⅲ,文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
【答案】D解析:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,
再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p.
(2018·新课标Ⅰ,文理3)【答案】A解析:由题干可知,农村的经济收入增加了一倍,实现翻番。为方便可设建设前后收入分别为100,200(单位省去)
A中,种植收入前后分别为,60.74,收入增加了,因此A选项不正确。
B中,其他收入前后分别为4.10.增加了一倍以上,B正确。
C中,养殖收入前后分别为30.60.收入增加了一倍,C正确。
D中,建设后,养殖收入与第三产业收入的和为(30+28)*2=116>100,D正确。故选A
(2018·新课标Ⅱ,理8)C 解析:30以内的素数有10个,满足和为30的素数对有3对,概率为.
(2018·新课标Ⅱ,文5)【答案】D 解析:从5个人中抽取2人的基事件总数为10种可能;从3人中抽取2人有3种可能;概率为0.3.
(2018·新课标Ⅲ,理5)C 解析:,当时,,此时系数.故选C.
(2018·新课标Ⅲ,理8)B解析:由,∴,∴,解之得,由,有.
(2018·新课标Ⅲ,文5)B解析:由题意.故选B.
(2017·新课标Ⅰ,文2)一组样本数据的方差与标准差反映了这组样本数据的稳定程度,故选B
(2017·新课标Ⅰ,理6)【解析】,对的项系数为,对的项系数为,∴的系数为,故选C;
(2017·新课标Ⅱ,理6)D 解析:解法一:将三人分成两组,一组为三个人,有种可能,另外一组从三人在选调一人,有种可能;两组前后在排序,在对位找工作即可,有种可能;共计有36种可能.
(2017·新课标Ⅱ,文11)【答案】D解析:如下表所示,表中的点横坐标表 示第一次取到的数,纵坐标表示第二次取到的数,总计有25种情况,满足条件的有10种,所以所求概率为.
(2017·新课标Ⅲ,文理3) 【答案】A解析:由图易知月接待客量是随月份的变化而波动的,有上升也有下降,所以A答案错误.
(2017·新课标Ⅲ,理4)解析 由二项式定理可得,原式展开中含的项为,则的系数为40,故选C.
(2016·新课标Ⅰ,文3)C. 解析: 只需考虑分组即可,分组(只考虑第一个花坛中的两种花)情况为(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共种情况,其中符合题意的情况有种,因此红色和紫色的花不在同一花坛的概率是.故选C.
(2016·新课标Ⅱ,理5)【答案】B 解析:有种走法,有种走法,由乘法原理知,共种走法,故选B.
(2016·新课标Ⅲ,4)【答案】D 解析:从图像中可以看出平均最高气温高于的月份有七月、八月,六月为左右,故最多3个.
(2016·新课标Ⅲ,文4)【答案】D 解析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中各月份的平均最高气温,结合所提供的四个选项,可以确定D是不正确的,因为从图中可以看出:平均最高气温高于只有7、8两个月份.故选D.
(2016·新课标Ⅲ,文5)【答案】C 解析:前2位共有种可能,其中只有1种是正确的密码,所求概率为.选C.
(2015·新课标Ⅰ,理4)A 解析:该同学通过测试的概率为,或,选(A).
(2015·新课标Ⅰ,理10)解析:在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取,故的系数为.
另解:,含的项,其中中含的项为,所以的系数为,故选C.
(2015·新课标Ⅰ,文4)选C,从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,1种,故所求概率为,故选C.
(2015·新课标Ⅱ,文理3)D解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈减少趋势,所以二氧化硫排放量与年份负相关,故选D.
(2014·新课标Ⅰ,5)D 解析:4位同学各自在周六、周日两天中任选一天参加公益活动共有种,
周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有种;②每天2人有种,则周六、周日都有同学参加公益活动的概率为;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为;选D.
(2014·新课标Ⅱ,5)A 解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则.
(2013·新课标Ⅰ,理3)【答案】C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.
(2013·新课标Ⅰ,理9)B解析:由题意可知,a=,b=,又∵13a=7b,∴,
即.解得m=6.故选B.
(2013·新课标Ⅰ,文3)解析:选B. 由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为.
(2013·新课标Ⅱ,理5)(2013·5)D解析:因为(1+x)5的二项展开式的通项为(0≤r≤5,r∈Z),则含x2的项为+ax·=(10+5a)x2,所以10+5a=5,a=-1. 故选D.
(2012·新课标Ⅰ,2)【答案】A 解析:先安排甲组,共有种,再安排乙组,将剩余的1名教师和2名学生安排到乙组即可,共有1种,根据乘法原理得不同的安排方案共有12种,故选择A。
(2012·新课标Ⅰ,文3)【解析】因为中,,所以样本相关系数,又所有样本点(,)(=1,2,…,)都在直线上,所以样本相关系数,故选择D。
(2011·新课标Ⅰ,理4文6)【答案】A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A
(2011·新课标Ⅰ,理8)解析1.令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D
解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.
故常数项==-40+80=40
二、填空题
(2023·新高考Ⅰ,13)【答案】64【解析】(1)当从8门课中选修2门,则不同的选课方案共有种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有种;②若体育类选修课2门,则不同的选课方案共有种;综上所述:不同选课方案共有种. 故答案为:64.
(2022·新高考Ⅰ,13)【答案】-28【解析】因为,所以的展开式中含的项为,的展开式中的系数为-28.
(2022·新高考Ⅱ,13)【答案】.【解析】因为,所以,因此.故答案为:.
(2022·全国甲卷,理15).【解析】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
(2022·全国乙卷,理13文14)【答案】【解析】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;其中,甲、乙都入选的选法有3种,故所求概率.故答案为:.
解法二:从5名同学中随机选3名的方法数为,甲、乙都入选的方法数为,所以甲、乙都入选的概率,故答案为:
(2020·全国卷Ⅱ,理14)【答案】 【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,先取2名同学看作一组,选法有:,
现在可看成是3组同学分配到3个小区,分法有:,
根据分步乘法原理,可得不同的安排方法种.
(2020·全国卷Ⅲ,理14)【答案】【解析】,其二项式展开通项:,当,解得,的展开式中常数项是:.故答案为:.
(2019·全国卷Ⅰ,理15) 【答案】 解析:甲队要以,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:.
(2019·全国卷Ⅱ,理13文14) 【答案】 解析: .
(2018·新课标Ⅰ,理15) 【答案】 解析:方法一:一类:名女生,名男生,则有种;二类:名女生,名男生,则有种;共有种.
方法二:共有种选法,没有女生的选法有:种,至少有一名女生的选法的种数.
(2017·新课标Ⅱ,13)一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则 .
【答案】 解析:随机变量,.
(2018·新课标Ⅲ,文14)【答案】分层抽样 解析:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.
(2016·15)【答案】 解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3).
(2016·新课标Ⅰ,理14)【解析】设展开式的第项为,,∴.当时,,即,故答案为10.
(2015·新课标Ⅱ,理15)(2015·15)3解析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.
(2014·新课标Ⅰ,理13)【解析】:展开式的通项为,
∴,,∴的展开式中的项为,故系数为20.
(2014·新课标Ⅰ,文13)解:设数学书为1,2,语文书为A,则所有的排法有(1,2,A),(1,A,2),(2,1, A),(2, A,1),(A,1,2),(A,2,1)共6 种,其中2 本数学书相邻的情况有4 种情况,故所求概率为.
(2014·新课标Ⅱ,文13)【答案】解析:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为.
(2014·新课标Ⅱ,理13)解析:∵,∴,即,∴,解得.
(2013·新课标Ⅱ,文13)解析:该事件基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},共有10个,记A=“其和为5”={(1,4),(2,3)},有2个,∴P(A)=.
(2013·新课标Ⅱ,14)8 解析:从1,2,…,n中任取两个不同的数共有种取法,两数之和为5的有(1,4),(2,3),共2种,所以,即,亦即n2-n-56=0,解得n=8.
三、解答题
(2023·新高考Ⅰ,21)【解析】(1)记“第次投篮的人是甲”为事件,“第次投篮的人是乙”为事件,
所以,.
(2)设,依题可知,,则

即,
构造等比数列,设,解得,则,
又,所以是首项为,公比为的等比数列,
即.
(3)因为,,
所以当时,,
故.
(2023·新高考Ⅱ,19)【解析】(1)依题可知,左边图形第一个小矩形的面积为,所以,所以,解得:,

(2)当时,

当时,
,
故,所以在区间的最小值为.
(2023·全国甲卷,理19)【解析】(1)依题意,的可能取值为,
则,,,
所以分布列为:
故.
(2)(i)依题意,可知这40只小白鼠体重增量的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,观察数据可得第20位为,第21位数据为,
所以,
故列联表为:
合计
对照组 6 14 20
实验组 14 6 20
合计 20 20 40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
(2023·全国甲卷,文19) 【解析】(1)试验组样本平均数为:
(2)(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为,后续依次为,故第20位为,第21位数据为,
所以,故列联表为:
合计
对照组 6 14 20
试验组 14 6 20
合计 20 20 40
(ii)由(i)可得,,
所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.
(2023·全国乙卷,理17)
【解析】(1),


的值分别为: ,

(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
(2023·全国乙卷,文17)
【解析】(1),


的值分别为: ,

(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
(2022·新高考Ⅰ,20)解:(1)由已知,
又,,
所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
(2)(i)因为,
所以,所以,
(ii) 由已知,,又,,
所以.
(2022·新高考Ⅱ,19)【解析】(1)平均年龄
(岁).
(2)设{一人患这种疾病的年龄在区间},所以

(3)设“任选一人年龄位于区间[4050)”,“从该地区中任选一人患这种疾病”,
则由已知得:,
则由条件概率公式可得,从该地区中任选一人,若此人的年龄位于区间,此人患这种疾病的概率为.
(2022·全国甲卷,理19)【解析】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为

(2)依题可知,的可能取值为,所以,,



即的分布列为
0 10 20 30
0.16 0.44 0.34 0.06
期望.
(2022·全国甲卷,文17) 【解析】(1)根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则;
B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则.
A家公司长途客车准点的概率为;B家公司长途客车准点的概率为.
(2)列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
=,
根据临界值表可知,有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
(2022·全国乙卷,文理19) 【解析】(1)样本中10棵这种树木的根部横截面积的平均值,样本中10棵这种树木的材积量的平均值,据此可估计该林区这种树木平均一棵的根部横截面积为,平均一棵的材积量为.
(2)
则.
(3)设该林区这种树木的总材积量的估计值为,又已知树木的材积量与其根部横截面积近似成正比,
可得,解之得.则该林区这种树木的总材积量估计为.
(2021·新高考Ⅰ,18)【解析】(1)由题可知,的所有可能取值为,,.
;;.
所以的分布列为
(2)由(1)知,.
若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.
;;.
所以.
因为,所以小明应选择先回答类问题.
(2021·新高考Ⅱ,21)【解析】(1).
(2)设,
因为,故,
若,则,故.
,因为,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
若,因为在为增函数且,
而当时,因为在上为减函数,故,
故为的一个最小正实根,
若,因为且在上为减函数,故1为的一个最小正实根,
综上,若,则.
若,则,故.
此时,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
而,故,
又,故在存在一个零点,且.
所以为的一个最小正实根,此时,
故当时,.
(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.
(2021·全国甲卷,文理17)【解析】(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
(2021·全国乙卷,文理17)【解析】(1),


.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
(2020·新高考Ⅰ,19)【解析】(1)用频率估计概率,从而得到“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率P==0.64;
(2)根据所给数据,可得下面的2×2列联表:
SO2 PM2.5 [0,150] (150,475]
[0,75] 64 16
(75,115] 10 10
(3)根据列联表中的数据可得

因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
(2020·全国卷Ⅰ,理19)【解析】(1)记事件甲连胜四场,则;
(2)记事件为甲输,事件为乙输,事件为丙输,
则四局内结束比赛的概率为,
所以,需要进行第五场比赛的概率为;
(3)记事件为甲输,事件为乙输,事件为丙输,记事件甲赢,记事件丙赢,
则甲赢的基本事件包括:、、、、、、、,所以,甲赢的概率为.
由对称性可知,乙赢的概率和甲赢的概率相等,
所以丙赢的概率为.
方法2:情形一:进行四场比赛丙获胜,概率
情形二:进行五场比赛,意味着丙一定会输掉一场比赛,且一定赢下第五场比赛.
①丙第二场输,则第三场不打,第四场第五场均要赢,此时概率为;
②丙第三场输,则第二场赢,第四场不打,第五场赢,此时概率为
③丙第四场输,则第二场赢,第三场赢,第五场赢(可能第四场对手未尝败绩,另一对手已淘汰,此时
丙仍奋战第五场),此时概率为
综上所述,丙最终获胜的概率为.
(2020·全国卷Ⅰ,文17)【解析】(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;
(2)甲分厂加工件产品的总利润为元,
所以甲分厂加工件产品的平均利润为元每件;
乙分厂加工件产品的总利润为
元,
所以乙分厂加工件产品的平均利润为元每件.
故厂家选择甲分厂承接加工任务.
(2020·全国卷Ⅱ,文理18)【解析】(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本的相关系数为:
(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.
(2020·全国卷Ⅲ,理18)【解析】(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
(2020·全国卷Ⅲ,文18)【解析】(1)由频数分布表可知,该市一天空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好

因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
(2019·全国卷Ⅰ,理21)21.解:X的所有可能取值为
所以的分布列为
(2)(i)由(1)得.
因此,故,即.
又因为,所以为公比为4,首项为的等比数列.
(ii)由(i)可得
.
由于,故,所以
表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.
(2019·全国卷Ⅰ,文17)解:(1)由调查数据,男顾客中对该商场服务满意的比率为,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2).由于,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
(2019·全国卷Ⅱ,理18) 解:(1)设双方10:10平后的第k个球甲获胜为事件Ak(k=1,2,3,…),
则P(X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P()=0.5×0.4+0.5×0.6=0.5.
(2)P(X=4且甲获胜)=P(A2A2A4)+P()=P()P(A2)P(A3)P(A4)+P(A1)P()P(A3)P(A4)=(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.
(2019·全国卷Ⅱ,文19)19.解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为.产值负增长的企业频率为.
用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.
(2),
,,
所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.
(2019·全国卷Ⅲ,文理17)解:(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.
(2)甲离子残留百分比的平均值的估计值为
2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
(2018·新课标Ⅰ,理20) 解析:(1)解:(1)20件产品中恰有2件不合格品的概率为.因此.
令,得.当时,;当时,.
所以的最大值点为.
(2)由(1)知,.
(i)令表示余下的180件产品中的不合格品件数,依题意知,,即,所以.
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
由于,故应该对余下的产品作检验.
(2018·新课标Ⅰ,文19)解:(1)
(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为
0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,
因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.
(3)该家庭未使用节水龙头50天日用水量的平均数为

该家庭使用了节水龙头后50天日用水量的平均数为

估计使用节水龙头后,一年可节省水.
(2018·新课标Ⅱ,理18)解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).
(2)利用模型②得到的预测值更可靠. 理由如下:
(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
(2018·新课标Ⅱ,文18)解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).
(2)利用模型②得到的预测值更可靠. 理由如下:
(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
(2018·新课标Ⅲ,理18)解析:(1)第一种生产方式的平均数为,第二种生产方式平均数为,∴,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.
(2)由茎叶图数据得到,∴列联表为
(3),∴有
的把握认为两种生产方式的效率有差异.
(2018·新课标Ⅲ,文18)解析:(1)第一种生产方式的平均数为,第二种生产方式平均数为,∴,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.
(2)由茎叶图数据得到,∴列联表为
(3),∴有
的把握认为两种生产方式的效率有差异.
(2017·新课标Ⅰ,理19)解析:(1)由题可知尺寸落在之内的概率为,落在之外的概率为.,
,由题可知,.
(2)(i)尺寸落在之外的概率为,由正态分布知尺寸落在之外为小概率事件,因此上述监控生产过程的方法合理.
(ii), ,
, ,需对当天的生产过程检查.
因此剔除,剔除数据之后:.

(2017·新课标Ⅰ,文19)【解析】(1),


. 所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.
(2)(i) ,
第13个零件的尺寸为,,
所以从这一天抽检的结果看,需对当天的生产过程进行检查.
(ii)剔除,这条生产线当天生产的零件尺寸的均值为,
方差为
故标准差为.
(ii)解法二:剔除,这条生产线当天生产的零件尺寸的均值为,由,得,
试剔除离群值,这条生产线当天生产的零件尺寸的方差
(2017·新课标Ⅱ,18)解析:(Ⅰ)旧养殖法的箱产量低于50kg的频率为0.012×5+0.014×5+0.024×5+0.034×5+0.040×5=0.62,由于两种养殖方法的箱产量相互独立,
于是P(A)=0.62×0.66=0.4092
(Ⅱ)旧养殖法的箱产量低于50kg的有100×0.62=62箱,不低于50kg的有38箱,新养殖法的箱产量不低于50kg的有100×0.66=66箱,低于50kg的有34箱,得到2×2列联表如下:
箱产量<50kg 箱产量≥50kg 合计
旧养殖法 62 38 100
新养殖法 34 66 100
合计 96 104 200
所以
,所以有99%的把握认为箱产量与养殖方法有关。
(III)根据箱产量的频率分布直方图,新养殖法的箱产量不低于50kg的频率为0.038×5+0.046×5+0.010×5+0.008×5=0.66>0.50,不低于55kg的频率为0.046×5+0.010×5+0.008×5=0.32<0.50,于是新养殖法箱产量的中位数介于50kg到55kg之间,设新养殖法箱产量的中位数为x,则有
(55-x)×0.068+0.046×5+0.010×5+0.008×5=0.50 ,解得x=52. 3529
因此,新养殖法箱产量的中位数的估计值52. 35。
(2017·新课标Ⅱ,文19)解:旧养殖法箱产量低于50kg的频率为5×(0.012+0.014+0.024+0.034+0.040) =0.62,因此,事件A的概率估计值为0.62 .
(2)根据箱产量的频率分布直方图得列联表:
箱产量<50kg 箱产量≥50kg
旧养殖法 62 38
新养殖法 34 66
由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.
(3)箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.
(2017·新课标Ⅲ,18)解析:(1)易知需求量可取
;;.
则分布列为:
(2)①当时:,此时,当时取到.
②当时:,
此时,当时取到.
③当时,
此时.
④当时,易知一定小于③的情况.
综上所述:当时,取到最大值为.
(2017·新课标Ⅲ,文18)解析 (1)设“六月份这种酸奶一天的需求量不超过瓶”为事件,
由题意可知,;
(2)由题意可知,当最高气温不低于时,
,概率;
当最高气温位于区间时,
,概率;
当最高气温低于时,
,概率.
综上,的所有可能取值为,和,的概率为.
(2016·新课标Ⅰ,19)解析:⑴ 每台机器更换的易损零件数为8,9,10,11
记事件为第一台机器3年内换掉个零件
记事件为第二台机器3年内换掉个零件
由题知,
设2台机器共需更换的易损零件数的随机变量为,则的可能的取值为16,17,18,19,20,21,22
16 17 18 19 20 21 22
⑵ 要令,,
则的最小值为19;
⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用
当时,费用的期望为
当时,费用的期望为
所以应选用
(2016·新课标Ⅱ,18)解析:⑴设续保人本年度的保费高于基本保费为事件,.
⑵设续保人保费比基本保费高出为事件,.
⑶解:设本年度所交保费为随机变量.
平均保费:

∴平均保费与基本保费比值为.
(2016·新课标Ⅲ,文理18)(1) 由题意得,
因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归方程来拟合y与t的关系
(2) ,
所以关于的线性回归方程为,将代入回归方程可得,
预测2016年我国生活垃圾无害化处理量将约为1.82亿吨
(2015·新课标Ⅰ,文理19)解析:(Ⅰ)根据散点图判断,适宜作为年销售量关于年宣传费的回归方程类型;
(Ⅱ)令,由,,所以,即关于的回归方程为;
(III)(i)当=49时,年销售量的预报值,年利润的预报值;
(ii)年利润的预报值,所以当即年宣传费=46.24时,年利润的预报值最大.
(2015·新课标Ⅱ,18)解析:(Ⅰ)两地区用户满意度评分的茎叶图如下:
A地区 B地区
4 6 8
3 5 1 3 6 4
6 4 2 6 2 4 5 5
6 8 8 6 4 3 7 3 3 4 6 9
9 2 8 6 5 1 8 3 2 1
7 5 5 2 9 1 3
通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散。
(Ⅱ)记表示事件:“A地区用户的满意度等级为满意或非常满意”;表示事件:“A地区用户的满意度等级为非常满意”;表示事件:“B地区用户的满意度等级为不满意”;表示事件:“B地区用户的满意度等级为满意”,则与独立,与独立,与互斥,,

由所给数据得发生的频率分别为,
故,
(2015·新课标Ⅱ,文18)解析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散。
(Ⅱ)A地区用户满意度等级为不满意的概率大。记CA表示事件:“A地区用户满意度等级为不满意”;CB表示事件:“B地区用户满意度等级为不满意”. 由直方图得P(CA)的估计值为(0.01+0.02+0.03)×10=0.6,P(CB)的估计值为(0.005+0.02)×10=0.25. 所以A地区用户满意度等级为不满意的概率大.
(2014·新课标Ⅰ,18)解析:(Ⅰ) 抽取产品质量指标值的样本平均数和样本方差分别为
…………6分
(Ⅱ)(ⅰ)由(Ⅰ)知~,从而
………………9分
(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826
依题意知,所以 ………12分
(2014·新课标Ⅱ,19)解析:(Ⅰ)由题意得:,,
∴,
∴,故所求线性回归方程为:.
(Ⅱ)由(Ⅰ)中的回归方程的斜率可知,2007年至2013年该地区农村居民家庭人均纯收入逐渐增加.令得:,故预测该地区2015年农村居民家庭人均纯收入为6.8千元。
(2014·新课标Ⅱ,文19)解析:(Ⅰ)两组数字是有序排列的,50个数的中位数为第25,26两个数. 由给出的数据可知道,市民对甲部门评分的中位数为(75+75)/2=75,对乙部门评分的中位数为(66+68)/2=77,所以,市民对甲、乙两部门评分的中位数分别为75,77.
(Ⅱ)甲部门评分数高于90共有5个、乙部门评分数高于90共有8个,部门的评分做于90的概率. 因此估计市民对甲、乙部门的评分小于90的概率分别为 ,所以,市民对甲、乙部门的评分大于90的概率分别为0.1,0.16.
(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.
(2013·新课标Ⅰ,19)解析:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以
P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=.
(2)X可能的取值为400,500,800,并且P(X=400)=,P(X=500)=,P(X=800)=.
所以X的分布列为
X 400 500 800
P
EX==506.25.
(2013·新课标Ⅰ,文18)解:(1)设A药观测数据的平均数为,B药观测数据的平均数为.
由观测结果可得=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.
由以上计算结果可得>,因此可看出A药的疗效更好.
(2)由观测结果可绘制如下茎叶图:
从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好.
(2012·新课标Ⅰ,18)解析:(1)当时,;当时,,得:。
(2)①可取,,,,,。
的分布列为
,。
②答案一:花店一天应购进16枝玫瑰花。理由如下:
若花店一天购进17枝玫瑰花,表示当天的利润(单位:元),那么的分布列为
的数学期望为,
的方差为,
由以上的计算结果可以看出,,即购进16枝玫瑰花时利润波动相对较小。
另外,虽然,但两者相差不大。故花店一天应购进16枝玫瑰花。
答案二:花店一天应购进17枝玫瑰花。理由如下:
若花店一天购进17枝玫瑰花,表示当天的利润(单位:元),那么的分布列为
的数学期望为,
由以上的计算结果可以看出,,即购进17枝玫瑰花时的平均利润大于购进16枝玫瑰花时的平均利润。故花店一天应购进17枝玫瑰花。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录