【金版教程】2015年高中物理选修3-4教学课件+课时精练:第十三章 光

文档属性

名称 【金版教程】2015年高中物理选修3-4教学课件+课时精练:第十三章 光
格式 zip
文件大小 20.3MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2015-04-01 20:03:03

文档简介

05课后课时精练
1. 关于光的折射及折射率的说法,下列正确的是(  )
A.光由一种介质进入另一种介质时,光的传播方向一定发生改变
B.放入盛水的碗中的筷子,看起来像折了一样,是光的折射
C.光由水射入空气中,折射角小于入射角
D.光在折射率大的介质中传播速度大
E.折射率可以小于1
解析:当光垂直交界面射入时,传播方向不变,A错;光由水射入空气中,折射角大于入射角,C错;光在介质中的传播速度取决于光的频率和介质的折射率,D错,由n=,v1,E错。
答案:B
2. 如果光以同一入射角从真空射入不同介质,则折射率越大的介质(  )
A.折射角越大,表示这种介质对光的偏折作用越大
B.折射角越大,表示这种介质对光的偏折作用越小
C.折射角越小,表示这种介质对光的偏折作用越大
D.折射角越小,表示这种介质对光的偏折作用越小
解析:由n=可知入射角相同时,折射率n越大,折射角θ2越小,偏折角Δθ=θ1-θ2就越大,所以C项正确。
答案:C
3.
两束细平行光a和b相距为d,从空气中互相平行地斜射到长方体玻璃砖的上表面,如图所示,若玻璃对a的折射率小于对b的折射率。当它们从玻璃砖的下表面射出后,有(  )
A.两束光仍平行,间距等于d
B.两束光仍平行,间距大于d
C.两束光仍平行,间距小于d
D.两束光不再相互平行
解析:作出两种光线穿过平行玻璃砖的光路图。根据na=,nb=,由题意知na<nb,ra>rb,故d′>d。光线经两侧面平行的玻璃砖后方向不变,出射光线平行。B对。
答案:B
4.
如图所示,有玻璃三棱镜ABC,顶角A为30°,一束光线a垂直于AB射入棱镜,由AC射出进入空气,测得出射光线与入射光线间夹角为30°,则棱镜的折射率为(  )
A. B.
C. D.
解析:由题意可知,光线从玻璃射向空气中时,入射角为θ1=30°,折射角为θ2=60°,则玻璃的折射率n==。
答案:C
5. 一束光由空气射入某介质,当入射光线和界面的夹角为30°时,折射光线恰好与反射光线垂直,则光在该介质中的传播速度是(光在真空中的传播速度为c)(  )
A. B.
C.c D.c
解析:
光路如图所示,设入射角为θ,折射角为γ,则=n,θ+γ=90°,可得n=,又根据n=,可得v=,B项正确。
答案:B
6. 某同学由于没有量角器,他在完成了光路图以后,以O点为圆心、10.00 cm为半径画圆,分别交线段OA于A点,交OO′连线的延长线于C点,过A点作法线NN′的垂线AB交NN′于点B,作NN′的垂线CD交NN′于D点,如图所示。用刻度尺量得OB=8.00 cm,CD=4.00 cm,由此可得出玻璃的折射率n=________。
解析:由折射定律得n==,
因为OA=OC,
所以n====1.5。
答案:1.5
7.
如图所示,一细光束以45°的入射角从空气射向长方体透明玻璃砖ABCD的上表面E点,折射光线恰好过C点,已知BC=30 cm,BE=10 cm,求:
(1)此玻璃砖的折射率。
(2)光束在玻璃砖中传播的时间。
解析:(1)如图所示,由几何关系得折射角θ2=30°,根据折射定律,得n==。
(2)光在玻璃砖中的速度v=,则时间t==×10-9 s≈1.63×10-9 s。
答案:(1) (2)1.63×10-9 s
8. 如图所示,真空中有一个半径为R=0.1 m、质量分布均匀的玻璃球,频率为f=5.0×1014 Hz的细激光束在真空中沿直线BC传播,在玻璃球表面的C点经折射进入小球,并在玻璃球表面的D点又经折射进入真空中。已知∠COD=120°,玻璃球对该激光束的折射率为。求:
(1)此激光束在真空中的波长。
(2)此激光束进入玻璃时的入射角i。
(3)此激光束穿越玻璃球的时间。
解析:(1)λ== m=6.0×10-7 m
(2)设激光束在玻璃球中的折射角为r,则n=
由图知r=30°,所以sini=nsinr=,故i=60°
(3)t=
s=2Rcosr= m
v== m/s=×108 m/s
所以t=1.0×10-9 s
答案:(1)6.0×10-7 m (2)60° (3)1.0×10-9 s
9. 如图所示,一条光线通过一个在水中的球形空气泡,下列哪一条表示出射光线的路径(  )
A.光线1 B.光线2
C.光线3 D.光线4
解析:光先从水进入空气泡中,由折射定律可知折射角应大于入射角;然后又从空气射入水中,折射角应小于入射角。综上所述,只有1光线符合要求,A选项正确。
答案:A
10. 把用相同玻璃制成的厚度为d的正方体a和半径亦为d的半球体b,分别放在报纸上,且让半球的凸面向上。从正上方分别观察a、b中心处报纸上的字,下面的观察记录中正确的是(  )
A.a中的字比b中的高
B.b中的字比a中的高
C.一样高
D.a中的字较没有玻璃时高,b中的字和没有玻璃时一样
解析:如图所示放在半球体b球心下的字反射的光线经半球体向外传播时,传播方向不变,故人看到字的位置是字的真实位置;而处在正方体a中心下的字反射的光线在正方体的上表面处发生折射,折射光线远离法线,当人逆着折射光线看去时,看到的是真实字的虚像,其位置比真实字的位置高,故选A、D。
答案:AD
11.
现在高速公路上的标志牌都用“回归反光膜”制成。夜间行车时,它能把车灯射出的光逆向返回,标志牌上的字特别醒目。这种“回归反光膜”是用球体反射元件制成的,反光膜内均匀分布着一层直径为10 μm的细玻璃珠,所用玻璃的折射率为,为使入射的车灯光线经玻璃珠折射——反射——折射后恰好和入射光线平行,如图所示,那么第一次入射的入射角应是(  )
A.15° B.30°
C.45° D.60°
解析:
作光路图如图所示,设入射角为θ,折射角为α,则θ=2α,n==,cosα==,α=30°,所以θ=60°。故选项D正确。
答案:D
12. 在做“测定玻璃的折射率”的实验中:
(1)甲同学在纸上画出玻璃砖的两个界面ab和cd时不慎碰了玻璃砖使它向ab方向平移了一些,如图甲所示。其后的操作都正确。但画光路图时,将折射点确定在ab和cd上,则测出的n值将________。
(2)乙同学为了避免笔尖接触玻璃面,画出的a′b′和c′d′都比实际侧面向外侧平移了一些,如图乙所示,以后的操作均正确,画光路图时将入射点和折射点都确定在a′b′和c′d′上,则测出的n值将________。
解析:(1)此时玻璃砖的平移对测量结果没有影响,由图(a)可看出折射角不变,入射角相同,故测得的折射率将不变。
(2)由图(b)可看出,使入射点O向左移,折射点向右移,所画出的折射角θ2′比实际折射角θ2偏大,由n=知,测得的折射率偏小。
答案:(1)不变 (2)偏小
13.
一半圆柱形透明物体横截面如图所示,底面AOB镀银(图中粗线),O表示半圆截面的圆心。一束光线在横截面内从M点入射,经过AB面反射后从N点射出。已知光线在M点的入射角为30°,∠MOA=60°,∠NOB=30°。求:
(1)光线在M点的折射角;
(2)透明物体的折射率。
解析:(1)如图,透明物体内部的光路为折线MPN,Q、M点相对于底面EF对称,Q、P和N三点共线。
设在M点处,光的入射角为i,折射角为r,∠OMQ=α,
∠PNF=β。根据题意有
α=30°①
由几何关系得,∠PNO=∠PQO=r,于是
β+r=60°②
且α+r=β③
由①②③式得
r=15°④
(2)根据折射率公式有
sini=nsinr⑤
由④⑤式得
n=
答案:见解析
课件87张PPT。课前自主学习课堂合作探究易错警示培优课堂对点练习课后课时精练谢谢观看!05课后课时精练
1. 关于全反射及其应用的认识,下列说法正确的是(  )
A.发生全反射时,仍有折射光线,只是折射光线非常弱,因此可以认为不存在折射光线而只有反射光线
B.全反射是反射光线与折射光线重合的一种现象
C.光线从光密介质射向光疏介质时,一定会发生全反射
D.光线从光疏介质射向光密介质时,不可能发生全反射
E.光纤通信是利用了光的折射原理
解析:发生全反射时,折射光线消失,A错,同理B错;由发生全反射的条件可知C错D对;光纤通信是利用了光的全反射原理,E错。
答案:D
2. 如图,光线在空气和半圆形玻璃砖的界面处的光路图中,正确的是(玻璃的折射率为1.5)(  )
A.图乙、丁 B.图甲、丁
C.图乙、丙 D.图甲、丙
解析:光线由空气进入玻璃砖中时,入射角大于折射角,由玻璃砖射入空气时,入射角小于折射角,由临界角计算公式得:C=arcsin=arcsin=41°49′,入射角50°大于临界角,将发生全反射。
答案:A
3. 光在某种介质中的传播速度为1.5×108 m/s,光从此介质射向空气并发生全反射时的临界角是(  )
A.15° B.30°
C.45° D.60°
解析:由n==2,又因为sinC==,故C=30°。
答案:B
4. 潜水员在水深为h的地方向水面观望时,发现整个天空及远处地面的景物均呈现在水面处的圆形区域内,已知水的临界角为θ,则所观察到的圆形半径为(  )
A.htanθ B.hsinθ
C. D.
解析:画出全反射光路图可知sinC=sinθ,tanθ=,R=htanθ,A正确。
答案:A
5.
光导纤维的结构如图,其内芯和外套材料不同,光在内芯中传播。以下关于光导纤维的说法正确的是(  )
A.内芯的折射率比外套的大,光传播时在内芯与外套的界面上发生全反射
B.内芯的折射率比外套的小,光传播时在内芯与外套的界面上发生全反射
C.内芯的折射率比外套的小,光传播时在内芯与外套的界面上发生折射
D.内芯的折射率与外套的相同,外套的材料有韧性,可以起保护作用
解析:光导纤维内芯的折射率比外套的大,光传播时在内芯与外套的界面上发生全反射。从而使载有声音、图象以及各种数字信号的激光在光纤中远距离传递。故只有A选项正确。
答案:A
6. 如图所示为一块建筑用幕墙玻璃的剖面图,在其上建立直角坐标系xOy,设该玻璃的折射率沿y轴正方向均匀发生变化。现有一单色光a从原点O,以某一入射角θ由空气射入该玻璃内部,且单色光a在玻璃内部的传播路径如图中实线所示。则玻璃的折射率沿y轴正方向发生变化的情况是(  )
A.折射率沿y轴正方向均匀减小
B.折射率沿y轴正方向先均匀减小后均匀增大
C.折射率沿y轴正方向均匀增大
D.折射率沿y轴正方向先均匀增大后均匀减小
解析:把幕墙玻璃沿y轴分为很多层,可以看出,上层的折射率比下层的折射率小,即沿y轴正方向折射率逐渐减小,选项A正确。
答案:A
7.
如图所示,一个透明玻璃球的折射率为,一束足够强的细光束在过球心的平面内,以45°入射角由真空射入玻璃球后,在玻璃球与真空的交界面处发生多次反射和折射,从各个方向观察玻璃球,能看到从玻璃球内射出的光线的条数是(  )
A.2 B.3
C.4 D.5
解析:
sinC==,C=45°;n=,θ=30°。光路图如图所示。所以共有3条光线射出玻璃球。
答案:B
8.
在桌面上有一倒立的玻璃圆锥,其顶点恰好与桌面接触,圆锥的轴(上图中虚线)与桌面垂直,过轴线的截面为等边三角形,如图所示。有一半径为r的圆柱形平行光束垂直入射到圆锥的底面上,光束的中心轴与圆锥的轴重合。已知玻璃的折射率为1.5,则光束在桌面上形成的光斑半径为(  )
A.r B.1.5r
C.2r D.2.5r
解析:
光路如图所示,左侧光线在圆锥面A点发生全反射,在△OAB中,=r,∠AOB=60°,利用几何关系可求得=r,在△ABC中,∠ACB=30°,利用几何关系可求得=3r,由此可知光束在桌面上形成的光斑半径为R=-=2r。
答案:C
9. 在厚度为d、折射率为n的大玻璃板下表面,有一个半径为r的圆形发光面。为了从玻璃板的上方看不见这个圆形发光面,可在玻璃板的上表面贴一块圆形纸片,问所贴纸片的最小半径应为多大?
解析:
根据题述,光路如图所示,图中S点为圆形发光面边缘上一点。由该点发出的光线能射出玻璃板的范围由临界光线SA确定,当入射角大于临界角C时,光线就不能射出玻璃板了。图中Δr=dtanC=d,而sinC=,则cosC=,所以Δr=。
故应贴圆纸片的最小半径R=r+Δr=r+。
答案:r+
10.
如图所示,空气中有一横截面为半圆环的均匀透明柱体,其内圆半径为r,外圆半径为R,R=r。现有一束单色光垂直于水平端面A射入透明柱体,只经过两次全反射就垂直于水平端面B射出。设透明柱体的折射率为n,光在透明柱体内传播的时间为t,若真空中的光速为c,则(  )
A.n可能为 B.n可能为2
C.t可能为 D.t可能为
解析:
只经过两次全反射可知第一次入射角为45°,反射光路图如图所示。根据全反射可知临界角C≤45°,再根据n=可知n≥;光在透明柱体中运动路程为L=4r,运动时间为t=L/v=4nr/c,则t≥4r/c,C、D均错。
答案:AB
11.
如图所示,空气中有一折射率为的玻璃柱体,其横截面是圆心角为90°、半径为R的扇形OAB,一束平行光平行于横截面,以45°入射角照射到OA上,OB不透光,若只考虑首次入射到圆弧上的光,则上有光透出部分的弧长为(  )
A.πR B.πR
C.πR D.πR
解析:
本题考查光的折射与全反射,意在考查考生综合应用数学知识,正确作出几何光路图解决几何光学问题的能力。作出如图所示的几何光路图,其中N点为从O点入射的折射光线,故圆弧NB段没有光线从AB圆弧射出,由折射定律=n可知=,即∠BON=30°。若在圆弧AB上的M点,折射光线发生了全反射,由sinC=可得C=45°,由几何关系则有∠AOM=90°-45°-30°=15°,所以圆弧AB上有光透出的长度为s=×2πR=πR,正确选项为B。
答案:B
12. 如图所示,一透明半圆柱体折射率为n=,半径为R、长为L。一平行光束从半圆柱体的矩形表面垂直射入,部分柱面有光线射出。求该部分柱面的面积S。
解析:半圆柱体的横截面如图所示。
OO′为半圆的半径,设从A点入射的光线在B点处恰好满足全反射条件。由折射定律有nsinθ=1,式中θ为全反射临界角,
sinθ==,θ=,
由几何关系得
∠O′OB=θ,
S=2RL·∠O′OB
代入题给条件得:S=RL
答案:RL
13. 直角玻璃三棱镜置于空气中。已知∠A=60°,∠C=90°,棱镜的折射率n=,一束极细的光束于AC的中点D垂直AC面入射,AD=a,求:
(1)光从棱镜第一次射入空气时的折射角;
(2)光从进入棱镜到它第一次射入空气时所经历的时间(设光在真空中传播速度为c)。
解析:(1)光从玻璃到空气全反射的临界角的正弦为:sinC==,解得临界角为:C=45°,当光线到达AB面时,入射角为60°,大于临界角C,故发生全反射。反射光线到达BC面时,如图所示,入射角为:θ1=30°<C,光线将折射入空气。由折射定律和光路可逆性可得:n==,解得光从棱镜第一次射入空气时的折射角为:θ2=45°。
(2)光在棱镜中的传播速度为:v==c,光在棱镜中通过的路程为:s=DE+EF=atan60°+=,光在棱镜中的传播时间为:t==。
答案:(1)45° (2)
课件66张PPT。课前自主学习课堂合作探究易错警示培优课堂对点练习课后课时精练谢谢观看!05课后课时精练
1. 关于光的干涉,下列说法正确的是(  )
A.频率相同的两列光波一定能产生干涉现象
B.频率不同的两列光波不可能产生干涉现象
C.用单色光做双缝干涉实验,可观察到明暗相间不等间距的条纹
D.单色光从两个狭缝到达屏上的路程差是光波长的奇数倍时出现暗条纹
E.单色光从两个狭缝到达屏上的路程差是光波长的整数倍时出现亮条纹
解析:由干涉现象产生的条件可知A错B对,用单色光做双缝干涉实验,可观察到明暗相间等间距的条纹,C错;屏上某点到双缝的距离差为波长整数倍时为明条纹,距离差为半波长奇数倍时为暗条纹,CD错。
答案:B
2. 在双缝干涉实验中,双缝的作用是(  )
A.遮住过于强烈的光
B.形成两个振动情况相同的光源
C.使白光变成单色光
D.使光发生折射
解析:双缝分光得到相干光。
答案:B
3. 对两列光波在空中叠加,以下说法中正确的是(  )
A.不同的色光有可能发生干涉现象
B.不同的色光不可能发生干涉现象
C.光的强度不同有可能发生干涉现象
D.光的强度不同不可能发生干涉现象
解析:两列光波叠加是否发生干涉现象关键看两列光波是否是相干光,即是否满足频率相同、相位差恒定的条件,不同的色光频率不同,所以不可能发生干涉现象,故B项正确;光的强度不同,但仍有可能满足相干条件,也就是有可能发生干涉现象,故选项C正确。D错误。
答案:BC
4. 光通过双缝后在屏上产生彩色条纹,若用红色和绿色玻璃分别挡住双缝,则屏上将出现(  )
A.黄色的干涉条纹
B.红绿相间的条纹
C.黑白相间条纹
D.无干涉条纹
解析:红光和绿光的频率不同,不能产生干涉现象。
答案:D
5. 杨氏双缝干涉实验中,下列说法正确的是(n为自然数,λ为光波波长)(  )
①在距双缝的路程相等的点形成暗条纹 ②在距双缝的路程差为nλ的点形成亮条纹 ③在距双缝的路程差为n的点形成亮条纹 ④在距双缝的路程差为(n+)λ的点形成暗条纹
A.①② B.②③
C.③④ D.②④
解析:在双缝干涉实验中,当某点距双缝距离之差δ为波长的整数倍时,即当δ=nλ(n=0,1,2,3…)时,该点为加强点,出现亮条纹。而当δ=(2n+1)(n=0,1,2,3…)时,该点为减弱点,出现暗条纹。
答案:D
6. 用波长为λ的单色光照射单缝O,经过双缝M、N在屏上产生明暗相间的干涉条纹,如图所示,图中a、b、c、d、e为相邻亮条纹的位置,c为中央亮条纹,则(  )
A.O到达a、b的路程差为零
B.M、N到达b的路程差为λ
C.O到达a、c的路程差为4λ
D.M、N到达e的路程差为2λ
解析:振动一致的两光源在空间发生干涉,得到亮条纹的条件满足Δr=kλ(k=0,1,2,3…)。
答案:BD
7. 用单色光做双缝干涉实验,已知屏上一点P到双缝的路程差Δr=1.5×10-6 m,当单色光波长λ1=0.5 μm时,P点将形成亮纹还是暗纹?当单色光波长λ2=0.6 μm时,此时在中央亮纹和P点之间有几条暗纹?
解析:屏上一点P到双缝的路程差(即光程差Δr=r2-r1)等于波长整数倍处出现亮条纹,等于半波长奇数倍处为暗条纹。因此对波长λ1=0.5 μm的单色光有
==3
即光程差是波长的整数倍,所以P点出现亮条纹。
对波长λ2=0.6 μm的单色光有
==2.5
即光程差是半波长的奇数倍,所以P点是暗条纹。
由中央亮纹处到P点,光程差逐步增大,必有光程差与波长之比为、两点,即在中央亮纹和P点之间有两条暗纹。
答案:P点亮条纹 两条暗纹
8.
如图所示,在某次双缝干涉实验中,Q处是中央亮条纹P往上数的第一条亮条纹,已知从S1和S2发出的两束相干光到Q处的路程差是9×10-7 m,则实验所用的单色光的频率是多少?第二条暗条纹到双缝的路程差为多少?
解析:由于Q是第一条亮条纹
所以QS2-QS1=λ=9×10-7 m。
由c=fλ得:f== Hz=×1015 Hz
第二条暗条纹到S1、S2的路程差为:
Δs=λ=1.35×10-6 m。
答案:×1015 Hz 1.35×10-6 m
9. S1、S2为两个相干光源,发出的光的频率为7.5×1014 Hz,光屏上A点与S1、S2的路程差为1.8×10-6 m。
(1)若S1、S2的振动步调完全一致,则A点出现什么条纹?
(2)若S1、S2的振动步调完全相反,则A点出现什么条纹?
解析:由λ=得λ= m=4×10-7 m
==4.5,即路程差为半波长的奇数倍。
(1)若S1、S2的振动步调完全相同,则A点出现暗条纹。
(2)若S1、S2的振动步调完全相反,则路程差为半波长的奇数倍时应为加强点,A点出现亮条纹。
答案:(1)暗条纹 (2)亮条纹
10.
如图所示是研究光的双缝干涉的示意图,挡板上有两条狭缝S1、S2,由S1和S2发出的两列波到达屏上时产生干涉条纹,已知入射激光的波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记作0号亮纹,由P向上数,与0号亮纹相邻的亮纹为1号亮纹,与1号亮纹相邻的亮纹为2号亮纹,则P1处的亮纹恰好是10号亮纹。设直线S1P1的长度为δ1,S2P1的长度为δ2,则δ2-δ1等于(  )
A.9λ B.10λ
C.11λ D.18λ
解析:当δ2-δ1=nλ(n=0,1,2…)时,出现亮纹,由题意知,0号亮纹时n=0,1号亮纹时n=1,故10号亮纹时δ2-δ1=10λ。
答案:B
11.
某同学自己动手利用如图所示器材,观察光的干涉现象,其中,A为单缝屏,B为双缝屏,C为像屏。当他用一束阳光照射到A上时,屏C上并没有出现干涉条纹。他移走B后,C上出现一窄亮斑。分析实验失败的原因,最大的可能是(  )
A.单缝S太窄
B.单缝S太宽
C.S到S1和S2距离不等
D.阳光不能作光源
解析:双缝干涉中单缝的作用是获得线光源,而线光源可以看做是由许多个点光源沿一条线排列组成的,这里观察不到光的干涉现象是由于不满足相干条件,单缝太宽。
答案:B
12.
如图所示,在双缝干涉中,若用λ1=5.0×10-7 m的光照射,屏上O点为中央亮条纹,屏上A点为第二级亮条纹所在处。若换用λ2=4.0×10-7 m的光照射时,屏上O处是什么情况?屏上A处又是什么情况?
解析:屏上O点到双缝的距离之差,无论用何种光做实验,其路程差都是0,所以O处仍为亮条纹,此亮条纹为中央亮条纹。
设屏上A点到双缝的距离差为Δx,
因用λ1=5.0×10-7 m的光照射时,
A处为第二级亮条纹,有Δx=2λ1,设对λ2的入射光来说Δx=kλ2,故:Δx=2λ1=1×10-6 m=kλ2=k×4.0×10-7 m
有k=2.5,即Δx为的奇数倍,所以A处为暗条纹,
则:Δx=(2n+1)(n=0,±1,±2,±3…),解得n=2,而n=0时为第一级暗条纹,因n=2,所以A处为第三级暗条纹。
答案:O处为亮条纹 A处为第三级暗条纹
13.
如图所示,在双缝干涉实验中,S1和S2为双缝,P是光屏上的一点,已知P点与S1、S2距离之差为2.1×10-6 m,分别用A、B两种单色光在空气中做双缝干涉实验,问P点是亮条纹还是暗条纹?
(1)已知A光在折射率为n=1.5的介质中波长为4×10-7 m;
(2)已知B光在某种介质中波长为3.15×10-7 m,当B光从这种介质射向空气时,临界角为37°;
(3)若让A光照射S1,B光照射S2,试分析光屏上能观察到的现象。
解析:(1)设A光在空气中波长为λ1,在介质中波长为λ2,由n=,得
λ1=nλ2=1.5×4×10-7 m=6×10-7 m
根据路程差Δr=2.1×10-6 m,
所以N1===3.5
由此可知,从S1和S2到P点的路程差是波长λ1的3.5倍,所以P点为暗条纹。
(2)根据临界角与折射率的关系
sinC=得n==
由此可知,B光在空气中波长λ2为:
λ2=nλ介=×3.15×10-7 m=5.25×10-7 m
由路程差Δr和波长λ的关系
N2===4
可见,用B光作光源,P点为亮条纹。
(3)若让A光和B光分别照射S1和S2,这时不能发生干涉,此时在光屏上只能观察到亮光。
答案:(1)暗条纹 (2)亮条纹 (3)见解析
课件48张PPT。课前自主学习课堂合作探究易错警示培优课堂对点练习课后课时精练谢谢观看!04课后课时精练
1. 在杨氏双缝干涉实验中,如果(  )
A.用白光作为光源,屏上将呈现黑白相间的条纹
B.用红光作为光源,屏上将呈现红黑相间的条纹
C.用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹
D.相邻干涉条纹之间的距离相等
E.中央明条纹宽度是两边明条纹宽度的2倍
F.屏与双缝之间距离减小,则屏上条纹间的距离增大
G.在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距
解析:用白光作光源,屏上将出现彩色条纹,A错;由干涉现象的产生条件可知C错;中央明条纹与两边明条纹宽度相同,E错,由Δx=λ可知FG错误。
答案:BD
2. 在双缝干涉实验中发现条纹太密,难以测量,可以采用的改善办法是(  )
A.改用波长较长的光(如红光)作入射光
B.增大双缝到屏的距离
C.减小双缝间距
D.增大双缝间距
解析:由Δx=可得当l变大,λ变长,d变小时,可使Δx增大,使条纹变疏,故选项A、B、C正确。
答案:ABC
3. 某同学在做双缝干涉实验时,安装好实验装置,在光屏上却观察不到干涉图样,这可能是由于(  )
A.光束的中央轴线与遮光筒的轴线不一致,相差较大
B.滤光片、单缝、双缝的中心在同一高度
C.单缝与双缝不平行
D.光源发出的光束太强
解析:安装实验器件时要注意:光束的中央轴线与遮光筒的轴线要重合,光源与光屏正面相对,滤光片、单缝和双缝要在同一高度,中心位置在遮光筒的轴线上,单缝与双缝要互相平行才能使实验成功。当然还要使光源发出的光束不致太暗,据上述分析可知选项A、C正确。故正确答案为A、C。
答案:AC
4. 一束白光通过双缝后在屏上观察到干涉条纹,除中央白色条纹外,两侧还有彩色条纹,是因为(  )
A.各色光的波长不同,因而各色光产生的干涉条纹间距不同
B.各色光的强度不同,造成条纹间距不同
C.各色光的强度不同
D.各色光通过双缝到达一确定点的距离不同
解析:双缝干涉条纹的宽度与光的波长成正比,各色光的波长不同,则条纹宽度不同。故正确答案为A。
答案:A
5. 在双缝干涉实验中,设单缝宽度为h,双缝距离为d,双缝与屏的距离为l,当采取下列四组数据中的哪一组时,可在光屏上观察到清晰可辨的干涉条纹(  )
A.h=1 cm,d=0.1 mm,l=1 m
B.h=1 mm,d=0.1 mm,l=10 cm
C.h=1 mm,d=10 cm,l=1 m
D.h=1 mm,d=0.1 mm,l=1 m
解析:在双缝干涉实验中,要得到清晰的干涉条纹,由Δx=λ可知,必须满足单缝宽度和双缝之间的距离都很小,双缝到屏的距离足够大,故正确选项为D。
答案:D
6.
如图所示,用单色光做双缝干涉实验时,P处为第二条亮条纹,改用频率较高的单色光重做实验(其他条件不变)时,则第二条亮条纹的位置(  )
A.仍在P处
B.在P点上方
C.在P点下方
D.要将屏向双缝方向移近一些才能看到亮条纹
解析:光波的频率变高,则光波波长变短。由Δx=λ可知,Δx减小。所以,第二条亮条纹的位置在P点的下方。正确答案为C。
答案:C
7. 某同学按实验装置安装好仪器后,成功地观察到光的干涉现象。若他在此基础上对仪器进行如下几种改动,还能使实验成功的是(  )
A.将遮光筒内的光屏向靠近双缝的方向移动少许,其他不动
B.将滤光片移至单缝和双缝之间,其他不动
C.将单缝向双缝移动少许,其他不动
D.将单缝与双缝的位置互换,其他不动
解析:光屏靠近双缝时,l减小,照样能出现干涉条纹,只是条纹宽度减小;将滤光片移至单缝与双缝之间时,照样能形成干涉且条纹宽度不变;改变单缝与双缝之间的距离时,干涉条纹不变,但是将单缝与双缝之间的位置互换时,只有一个光源而不能产生干涉,故A、B、C正确,D错。
答案:ABC
8. 如图所示,在“用双缝干涉测量光的波长”的实验中,光具座上放置的光学元件依次为①光源、②________、③________、④________、⑤遮光筒、⑥光屏。对于某种单色光,为增加相邻亮纹(暗纹)间的距离,可采取____________________________的方法。
解析:做实验时用单色光,②是滤光片,其他依次是单缝、双缝、遮光筒和毛玻璃屏。由公式Δx=λ可知,λ一定,要增大Δx,可增大l或减小d。
答案:滤光片 单缝 双缝 增大双缝到光屏的距离或减小双缝间距离
9. 用氦氖激光器进行双缝干涉实验,已知使用的双缝间距d=0.1 mm,双缝到屏的距离l=6.0 m,测得屏上干涉条纹中相邻亮条纹的间距是3.8 cm,氦氖激光器发出的红光的波长λ是多少?假如把整个装置放入折射率是的水中,这时屏上相邻亮条纹的间距是多少?
解析:由条纹间距Δx,双缝间距d,双缝到屏的距离L及波长λ的关系,可测波长。同理,知道水的折射率,可知该光在水中的波长,然后由d、Δx、L、λ关系,可求出相邻亮条纹的间距。
由Δx=λ,可以得出红光的波长λ=Δx= m=6.3×10-7 m。
故氦氖激光器发出的红光的波长是6.3×10-7 m。
如果把整个装置放入水中,激光器发出的红光在水中的波长设为λ′,由光的特点可知:光在传播过程中,介质发生变化,波长和波速发生改变,但频率不变。
由此可知=,而=n,则λ′== m=4.7×10-7 m。
这时屏上相邻亮条纹的间距是Δx′=λ′= m=2.8×10-2 m。
答案:6.3×10-7 m 2.8×10-2 m
10. 某次实验中,测得第一级明条纹和第三级明条纹相距4.0×10-2 m,若双缝间距为0.1 mm,缝到屏的距离为L=4.0 m,则光波的波长为(  )
A.8.0×10-8 m B.5.0×10-7 m
C.1.5×10-8 m D.1.6×10-8 m
解析:由Δx=λ,得λ=代入数据得
λ=5.0×10-7 m。
答案:B
11. 用a、b两种单色光分别照射同一双缝干涉装置,在距双缝恒定距离的屏上得到如图所示的干涉图样,其中图甲是a光照射时形成的,图乙是b光照射时形成的,则关于a、b两束单色光,下述说法中正确的是(  )
A.a光的频率比b光的大
B.在水中a光传播的速度比b光的大
C.水对a光的折射率比b光的大
D.b光的波长比a光的短
解析:从图中可以看出,a光的条纹间距小,说明a光的波长小,频率大,选项D错误,选项A正确;水对频率低的单色光的折射率小,即水对b光的折射率小,选项C正确;折射率小的光在水中的传播速度大,即b光在水中的传播速度大,选项B错误。
答案:AC
12. 利用双缝干涉测定光的波长的实验中,双缝间距d=0.4 mm,双缝到光屏间的距离l=0.5 m,用某种单色光照射双缝得到干涉条纹如图所示,分划板在图中A、B位置时游标卡尺读数也如图中所给出,则:
(1)分划板在图中A、B位置时游标卡尺读数分别为xA=______mm,xB=_______mm,相邻两条纹间距Δx=________mm;
(2)波长的表达式λ=________(用Δx、l、d表示),该单色光的波长λ=________m;
(3)若改用频率较高的单色光照射,得到的干涉条纹间距将________(填“变大”、“不变”或“变小”)。
解析:(1)游标卡尺读数时:一要注意精确度,二要注意读数时主尺读数应为游标尺零刻度线所对主尺位置的读数;三要注意单位,无论是主尺读数还是游标尺读数都要以mm为单位读取。本题中还要注意主尺上的数字的单位是cm,不是mm。
由图可知xA=11.1 mm,xB=15.6 mm,
Δx=×(15.6-11.1) mm=0.75 mm。
(2)由Δx=λ得λ=Δx=×0.75×10-3 m=6.0×10-7 m。
(3)由λ=Δx可知,波长越长的光,干涉条纹间距越大。根据频率、光速与波长的关系可知,频率越大的光,波长越短,所以干涉条纹间距越小。
答案:(1)11.1 15.6 0.75
(2)Δx 6.0×10-7 (3)变小
13.
1801年,托马斯·杨用双缝干涉实验研究了光波的性质。1834年,洛埃利用单面镜同样得到了杨氏干涉的结果(称洛埃镜实验)。洛埃镜实验的基本装置如图所示,S为单色光源,M为一平面镜。设光源S到平面镜的垂直距离和到光屏的垂直距离分别为a和L,光的波长为λ,在光屏上形成干涉条纹。试分析说明为什么会在光屏上形成干涉条纹,并写出相邻两条亮纹(或暗纹)间距离Δx的表达式。
解析:
从光源直射出的光与经平面镜反射后的光满足频率相同、相位差恒定、振动方向也相同的条件,在相遇的区域叠加发生干涉。可作出光路图如图所示,在光屏上加黑的区域就是能够看到的干涉条纹区。从光路图可以看出,光源S发出的光与经平面镜反射后的光(好像是从像点光源S′发出的)发生干涉,所以S与S′相当于杨氏双缝干涉中的两条缝,在双缝干涉相邻亮条纹的中心间距公式Δx=λ中,2a就是双缝间距d,因此洛埃镜实验中Δx=λ。
答案:见解析
课件47张PPT。课前自主学习课堂合作探究课堂对点练习课后课时精练谢谢观看!05课后课时精练
1. 下列说法正确的是(  )
A.光在任何情况下都能发生明显的衍射现象
B.单缝的宽度越大,衍射现象越明显
C.光的衍射现象为光的波动说提供了有力的证据
D.光的衍射现象完全否定了光的直线传播结论
E.阳光下茂密的树阴中地面上的圆形亮斑是泊松亮斑
F.阳光经凸透镜后形成的亮斑是泊松亮斑
解析:根据光产生明显衍射现象的条件可知,选项A错误;单缝的宽度越大,衍射现象越不明显,选项B错误;因衍射也是波特有的现象,所以光的衍射现象的发现为光的波动说提供了有力的证据,选项C正确;当障碍物较大时,光的衍射很弱,光几乎沿直线传播,即光的直线传播只是特殊情况下的近似,二者是统一的,选项D错误;阳光下茂密的树阴中地面上的圆形亮斑是小孔成像,故E错误;阳光经凸透镜后形成的亮斑是光的折射现象,故F错误。
答案:C
2. 对光的衍射现象的定性分析,下列说法正确的是(  )
A.只有障碍物或孔的尺寸可以跟光波波长相比拟甚至比波长还要小的时候,才能产生明显的衍射现象
B.衍射现象是光特有的现象,只有光才会发生衍射
C.光的衍射现象否定了光的直线传播的结论
D.光的衍射现象说明了光具有波动性
解析:光的干涉现象和衍射现象无疑说明了光具有波动性,而小孔成像说明光沿直线传播,而要出现小孔成像,孔不能太小,光的直线传播规律只是近似的,只有在光波长比障碍物小的情况下,光才可以看作是直线传播的,所以光的衍射现象和直线传播是不矛盾的,它们是在不同条件下出现的两种现象,衍射现象是波特有的现象。故上述选项中正确的是A、D。
答案:AD
3. 点光源照在一个剃须刀片上,在屏上形成了它的影子,其边缘较为模糊,原因是(  )
A.光的反射
B.光强太小
C.光的干涉
D.光的衍射
解析:这是光在刀片边缘处产生的衍射现象,在边缘呈现明暗相间的衍射图样,从而使其影像轮廓变得模糊不清。
答案:D
4. 观察单缝衍射现象时,把缝宽由0.2 mm逐渐增大到0.8 mm,看到的现象是(  )
A.衍射条纹的间距逐渐变小,衍射现象逐渐不明显
B.衍射条纹的间距逐渐变大,衍射现象越来越明显
C.衍射条纹的间距不变,只是亮度增强
D.以上现象都不会发生
解析:由单缝衍射实验的调整与观察可知,狭缝宽度越小,衍射现象越明显,衍射条纹越宽,条纹间距也越大,本题是将缝调宽,现象向相反的方向发展,故选项A正确,B、C、D错误。
答案:A
5.
在一次观察光衍射的实验中,观察到如图所示的清晰的明暗相间图样(黑线为暗纹),那么障碍物应是(  )
A.很小的不透明的圆板
B.很大的中间有大圆孔的不透明的圆板
C.很大的不透明圆板
D.很大的中间有小圆孔的不透明的圆板
解析:由题图可知中央是大且亮的圆形亮斑,周围分布着明暗相间的同心圆环,且越向外,圆形条纹宽度越小,可判断此图样为圆孔衍射图样,故D选项正确;有的同学误选为A,要注意很小的不透明的圆板产生的图样中心也是亮点,但其周围有一个大的阴影区,在阴影区的边缘有明暗相间的圆环,它与圆孔衍射的图样是不同的。
答案:D
6. 关于光的干涉和衍射现象,下列说法正确的是(  )
A.光的干涉现象遵循波的叠加原理,衍射现象不遵循波的叠加原理
B.光的干涉条纹是彩色的,衍射条纹是黑白相间的
C.光的干涉现象说明光具有波动性,光的衍射现象不能说明这一点
D.光的干涉和衍射现象都是光波叠加的结果
解析:从成因分析,光的干涉现象、衍射现象都是光波叠加的结果,两者都表明光是一种波。A、C项错误,D项正确。从条纹特点看,虽然条纹宽度、间距方面两者有所区别,但单色光的干涉条纹、衍射条纹都是明暗相间的,白光的干涉条纹、衍射条纹都是彩色条纹,B项错误。
答案:D
7. 下列哪些现象是光的衍射产生的(  )
A.泊松亮斑
B.阳光下茂密的树阴中地面上的圆形亮斑
C.阳光经凸透镜后形成的亮斑
D.平行光照在一个较大障碍物上后,影的轮廓模糊不清
解析:选项A、D中的情景都是光偏离直线传播造成的,都属于光的衍射现象。B中为小孔成像,C中为凸透镜对光的会聚作用。
答案:AD
8. 我们经常看到,凡路边施工处总挂有红色的灯,除了红色光容易引起人们的视觉反应外,这样做的另一个重要的原因是(  )
A.红光比其他可见光更容易发生衍射
B.红光比其他可见光更容易发生干涉
C.红光比其他可见光频率更大
D.红光比其他可见光在玻璃中的折射率小
解析:红光波长较长,易衍射,这样有雾的天气行人也能较早发现施工处,引起注意。
答案:A
9. 沙尘暴是由于土地的沙化引起的一种恶劣的气象现象,发生沙尘暴时能见度只有十几米,天气变黄变暗,这是由于这种情况下(  )
A.只有波长较短的一部分光才能到达地面
B.只有波长较长的一部分光才能到达地面
C.只有频率较大的一部分光才能到达地面
D.只有频率较小的一部分光才能到达地面
解析:波长越大越容易绕过障碍物达到较远地方,故B正确;再由v=λf可知D对。
答案:BD
10. 在杨氏双缝干涉实验中,如果(  )
A.用白光作为光源,屏上将呈现黑白相间的条纹
B.用红光作为光源,屏上将呈现红黑相间的条纹
C.用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹
D.用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距不等的条纹
解析:白光是由不同频率的单色光组成的复色光,各种色光都能形成明暗相间的条纹,各种色光都在中央条纹处形成亮条纹,从而复合成白色条纹,由于两侧条纹间距与各色光波长成正比,即红光的亮条纹间宽度最大,紫光亮条纹间宽度最小,即除中央条纹以外的其他条纹不能完全重合,这样便形成了彩色干涉条纹,所以A错,B正确;当两缝用不同光照射时,两光频率不同,不是相干光,不能呈现彩色条纹,C错;遮住一缝,则为衍射实验,屏上将呈现间距不等的条纹,D正确。
答案:BD
11. 当游客站在峨眉山金顶背向太阳而立,而前下方又弥漫云雾时,有时会在前下方的天幕上看到一个外红内紫的彩色光环,这就是神奇的“佛光现象”。佛光是一种奇特的自然现象,当阳光照射较厚的云层时,日光射透云层后,会受到云层深处水滴或冰晶的反射,这种反射在穿过云雾表面时,在微小的水滴边缘产生衍射现象。那么,下述现象中与“佛光”现象成因相同的是(  )
A.雨后的彩虹
B.孔雀羽毛在阳光下色彩斑斓
C.路面上的油膜阳光下呈现彩色
D.阳光照射下,树影中呈现一个个小圆形光斑
解析:“佛光”现象属于衍射现象,孔雀羽毛色彩斑斓也属于衍射现象,B项正确。A项属于光的折射,C项属于光的干涉,D项属于小孔成像,故A、C、D均不正确。
答案:B
12.
如图所示,a、b两束光以不同的入射角由介质射向空气,结果有相同的折射角。下列说法正确的是(  )
A.b在该介质中的折射率比a大
B.若用b做单缝衍射实验,要比用a中央亮条纹更宽
C.用a更易观测到泊松亮斑
D.做双缝干涉实验时,用a光要比用b光条纹间距更大
解析:由光路图可知,a光偏折程度大,其频率较大,波长较短,故用b光更易观测到泊松亮斑;做单缝衍射实验时,b光中央亮条纹较宽;做双缝干涉实验时,b光的条
纹间距较大,所以B正确。
答案:B
13. 使太阳光垂直照射到一块遮光板上,板上有可以自由收缩的正方形孔,孔的后面放置一个光屏,在正方形孔逐渐变小直至闭合的过程中,光屏上依次可以看到几种不同的现象,试把下列现象依次排列:________。
A.圆形光斑
B.明暗相间的彩色条纹
C.变暗消失
D.正方形光斑
E.正方形光斑由大变小
解析:由于光的波长很短,因此当孔很大时,不会发生明显的衍射现象,此时光可看做是近似直线传播,在屏上得到遮光板的影;当孔继续减小时,虽不能使光发生明显的衍射现象,但可以在屏上得到太阳的像,即小孔成像;孔再继续减小时,光开始发生明显的衍射现象,出现明暗相间的彩色条纹;孔进一步减小直到闭合时,由于穿过光的能量减小而使光线变暗直至消失。
答案:DEABC
课件45张PPT。课前自主学习课堂合作探究易错警示培优课堂对点练习课后课时精练谢谢观看!05课后课时精练
1. 关于波的偏振现象,以下说法正确的是(  )
A.只有横波才能发生偏振现象
B.只有纵波才能发生偏振现象
C.只有振动方向与透振方向平行的光才能通过偏振片
D.只有振动方向与透振方向垂直的光才能通过偏振片
E.自然光包含着在垂直于传播方向上沿一切方向振动的光,但是沿各个方向振动的光波的强度可以不相同
F.偏振光是在垂直于传播方向上,只沿着某一特定方向振动的光
G.自然光透过一块偏振片后就成为偏振光,偏振光再透过一块偏振片后又还原为自然光
H.太阳、电灯等普通光源发出的光都是自然光
解析:偏振现象是横波特有的性质,A对B错;当振动方向与透振方向平行时,透过的光最强,相互垂直时没有光透过,CD错;自然光沿各方向振动的光波强度相同,E错;偏振光再透过一块偏振片后不能还原为自然光,G错。
答案:AFH
2. 下列现象可以说明光是横波的是(  )
A.光的干涉现象 B.光的色散现象
C.光的衍射现象 D.光的偏振现象
解析:根据光能发生干涉和衍射现象,说明光是一种波,具有波动性;根据光的色散现象,说明同一介质对不同光的折射率不同,也说明不同光在同一介质中的速度不同;光的偏振现象说明振动方向与光的传播方向垂直,即说明光是横波,所以正确选项是D。
答案:D
3. 光的偏振现象说明光是横波,下列现象中能反映光的偏振特性的是(  )
A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化
B.一束自然光入射到两种介质的分界面上,当反射光与折射光线之间的夹角恰好是90°时,反射光是偏振光
C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振片可以使景象更清晰
D.通过手指间的缝隙观察日光灯,可以看到彩色条纹
解析:由光的偏振知识可知A、B、C正确。通过手指间的缝隙观察日光灯,可以看到彩色条纹,是光的衍射现象,D错误。
答案:ABC
4. 有关偏振和偏振光的下列说法中,正确的有(  )
A.只有电磁波才能发生偏振,机械波不能发生偏振
B.只有横波能发生偏振,纵波不能发生偏振
C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光
D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光
解析:只有横波才能产生偏振现象,而机械波中也有横波,当然能发生偏振,A选项错误,B选项正确;我们通常看到的绝大部分光都是偏振光,自然光不一定非要通过偏振片才能变为偏振光,C选项错误,D选项正确。
答案:BD
5. 关于自然光和偏振光,下列观点正确的是(  )
A.自然光能产生干涉和衍射现象,而偏振光却不能
B.只有自然光透过偏振片才能获得偏振光
C.自然光只能是白色光,而偏振光不能是白色光
D.自然光和偏振光都能使感光底片感光
解析:光振动沿各个方向均匀分布的光就是自然光,而振动沿着特定方向的光就是偏振光,但自然光和偏振光都能发生干涉、衍射,所以A错。光的偏振现象并不罕见,除了从光源直接发出的光以外,我们通常看到的绝大部分光,都是偏振光,所以B错。光的颜色由光的频率决定,与光的振动方向无关,所以C错。自然光和偏振光都具有能量,都能使感光底片感光。
答案:D
6.
如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向看不到光亮,则(  )
A.图中a光为偏振光
B.图中b光为偏振光
C.以SP为轴将B转过180°后,在P处将看到光亮
D.以SP为轴将B转过90°后,在P处将看到光亮
解析:自然光在垂直于传播方向的平面内,沿各个方向振动是均匀分布的,通过偏振片后,透射光是只沿着某一特定方向振动的光。从电灯直接发出的光为自然光,故A错;它通过A偏振片后,即变为偏振光,故B对;设通过A的光沿竖直方向振动,而B偏振片只能通过沿水平方向振动的偏振光,则P点无光亮,将B转过180°后,P处仍无光亮,故C错;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光的偏振片,则偏振光能通过B,即在P处有光亮,故D对。
答案:BD
7. 如图所示是观看立体电影时放映机镜头上的偏振片和观看者所带的偏光眼镜的配置情况,其中正确的是(  )
解析:立体电影是利用光的偏振现象来实现的。两台放映机同时放映着从不同角度同时拍摄的场景,并且放映机采用正好垂直的偏振光进行放映,观众所戴的眼镜左、右镜片的透振方向正好也相互垂直。只有透振方向与某束偏振光的偏振方向平行的镜片才能透过该束偏振光,这样,两只镜片分别只能透过来自两部放映机中某一部的偏振光,则观众同时能获得两束带有不同信息的光线,在脑海中便能复合成立体感很强的场景。所以B图所示情况正确。
答案:B
8. 通过一块偏振片去观察电灯、蜡烛、月亮、反光的黑板,当以入射光线为轴转动偏振片时,看到的现象有何不同?
解析:看月亮和黑板时会感到亮度随偏振片的旋转而变化。灯光、烛光都是自然光,沿各个方向振动的光的强度相同,因此当偏振片旋转时,透射出来的光波的振动方向虽然改变了(肉眼对此不能感觉),但光的强度没有改变,亮度不变。月亮和黑板反射的光已经是偏振光,它们通过偏振片透射过来的光线的强弱会随偏振片的旋转发生周期性的变化。
答案:见解析
9.
如图所示,一玻璃柱体的横截面为半圆形,让太阳光或白炽灯光通过狭缝S形成细光束从空气射向柱体的O点(半圆的圆心),产生反射光束1和透射光束2。现保持入射光不变,将半圆柱绕通过O点垂直于纸面的轴线转动,使反射光束1和透射光束2恰好垂直。在入射光线的方向上加偏振片P,偏振片与入射光线垂直,其透振方向在纸面内,这时看到的现象是(  )
A.反射光束1消失
B.透射光束2消失
C.反射光束1和透射光束2都消失
D.偏振片P以入射光线为轴旋转90°角,透射光束2消失
解析:自然光射到界面上,当反射光与折射光垂直时,反射光和折射光的偏振方向相互垂直,且反射光的偏振方向与纸面垂直,折射光的偏振方向与纸面平行,因此当在入射光线方向垂直放上透振方向在纸面内的偏振片P时,因垂直于纸面无光,反射光束1消失,A正确,B、C均错误;偏振片转动90°,平行于纸面内的光消失,则透射光束2消失,D正确。
答案:AD
10. 一段时间以来“假奶粉事件”闹得沸沸扬扬,奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定含糖量。偏振光通过糖的水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标准值相比较,就能确定被测样品的含糖量了。如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,然后将被测样品P置于A、B之间,则下列说法中正确的是(  )
A.到达O处光的强度会明显减弱
B.到达O处光的强度不会明显减弱
C.将偏振片B转动一个角度,使得O处光强度最大,偏振片B转过的角度等于α
D.将偏振片A转动一个角度,使得O处光强度最大,偏振片A转过的角度等于α
解析:自然光通过偏振片A后,变成偏振光,调整到偏振片B的透振方向与A平行,偏振光能完全通过B,在O处得到最强的光。当在A、B间放糖溶液后,由于溶液的旋光作用,使通过A的偏振光振动方向转动了一定角度α,不能再完全通过B,此时在O处得到的光会明显减弱,故A正确、B错误;但当B或A转过一个角度,恰好使B的透振方向与经过糖溶液后的偏振光振动方向一致时,O处光强又为最强,故B或A的旋转角度即为糖溶液的旋光度,C、D均正确。故选A、C、D。
答案:ACD
11. 如图所示,S为一点光源,P、Q是偏振片,R是一光敏电阻,R1、R2是定值电阻,电流表和电压表均为理想电表,电源电动势为E,内阻为r。则当偏振片Q由图示位置转动90°的过程中,电流表和电压表的示数变化情况为(  )
A.电流表的示数变大,电压表的示数变小
B.电流表的示数变大,电压表的示数变大
C.电流表的示数变小,电压表的示数变大
D.电流表的示数变小,电压表的示数变小
解析:由题图可知偏振片Q转过90°时,几乎没有光同时透过P、Q两偏振片,则光敏电阻阻值变大,电路的总电阻变大,总电流变小,内电压变小,路端电压变大,故电压表示数变大;由于总电流变小,所以电阻R1上的分压变小,因此电阻R2上的分压变大,所以电流表的示数也变大,所以B正确。
答案:B
12.
如图所示,在杨氏双缝实验中,下述情况能否看到干涉条纹?简单说明理由。
(1)在单色自然光源S后加一偏振片P。
(2)在(1)情况下,再加偏振片P1、P2,P1与P2的透振光方向垂直。
解析:(1)能。到达S1、S2的光是从同一线偏振光分解出来的,它们满足相干条件,能看到干涉条纹,且由于偏振片很薄,对路程差的影响可忽略,干涉条纹的位置与间距和没有P时基本一致,只是强度由于偏振片的吸收作用而减弱。
(2)不能。由于从P1、P2射出的光的振动方向相互垂直,不满足干涉条件,故光屏E被均匀照亮,但无干涉现象。
答案:见解析
13. 一束光由真空入射到平面玻璃上,当其折射角为30°时,反射光恰好发生完全偏振(反射光线与折射光线垂直),由此可以计算出玻璃的折射率是多少?此时的入射角称为起偏角,也叫布儒斯特角,试求折射率为n的介质的布儒斯特角的通用表达式。
解析:
光由空气进入玻璃,光路图如图所示,根据折射定律可得n=,
而θ1+θ2=90°
所以n==cotθ2
由题意知θ2=30°,n=cot30°=
所求的布儒斯特角为θ1,所以由n==tanθ1
可得表达式为θ1=arctann
答案: θ1=arctann
课件41张PPT。课前自主学习课堂合作探究易错警示培优课堂对点练习课后课时精练谢谢观看!05课后课时精练
1. 关于光的色散、激光的认识,下列说法正确的是(  )
A.棱镜对红光的折射率比紫光大
B.红光在棱镜中的速度比紫光大
C.每种色光通过棱镜后都会分成几种颜色的光
D.激光不能像无线电波那样用来传播信息
E.全息照相技术利用激光平行度好的特点
解析:频率越大,同一介质对单色光的折射率越大,故A错,由v=,可知B对;白光含有n种不同频率的单色光,因而才会发生色散,C错;激光同样能够传播信息,D错;全息照相技术利用激光的相干性好的特点E错。
答案:B
2. 关于激光的应用问题,下列说法中正确的是(  )
A.光纤通信是应用激光平行度非常好的特点对信号进行调制,使其在光导纤维中进行传递信息
B.计算机内“磁头”读出光盘上记录的信息是应用了激光有相干性的特点来进行的
C.医学中用激光作“光刀”来切除肿瘤是应用了激光能量高的特点
D.“激光测距雷达”利用激光测量很远目标的距离是应用了激光亮度高的特点
解析:光纤通信主要利用激光的相干性,A错误;计算机内的“磁头”读出光盘上的信息主要应用了激光的平行性好,选项B错误;医疗中的激光“光刀”利用了激光的能量高的特点,C正确;激光测距利用的是激光的平行性,D错误。
答案:C
3. 表面附着油膜的透明玻璃片,当有阳光照射时,可在表面和玻璃片的边缘分别看到彩色图样,则(  )
A.两者都是色散现象
B.两者都是干涉现象
C.前者是干涉现象,后者是折射现象
D.前者是色散现象,后者不是色散现象
解析:阳光照射到油膜上,油膜前后表面的反射光干涉形成彩色图样,是干涉现象。阳光照在边缘棱角处,由于折射产生彩色图样,是折射现象,两者都属于色散现象,选项A、C正确。
答案:AC
4. 如图所示,一束白光从左侧射入肥皂液膜,下列中:①人从右侧向左看,可看到白色条纹;②人从左侧向右看,可看到彩色条纹;③彩色条纹水平排列;④彩色条纹竖直排列。正确的是(  )
A.①③ B.①④
C.②③ D.②④
解析:此题考查的是肥皂液膜的薄膜干涉问题。彩色条纹是前后两表面的反射光相互叠加的结果,厚度相同的空气楔处若为明纹,将是一条水平线。故正确答案为C。
答案:C
5. 如图所示,一束由红、绿、紫三种单色光组成的复色光,通过横截面为梯形的玻璃砖后,在光屏上形成彩色光带。下列关于彩色光带排列顺序的说法中正确的是(  )
A.从上到下依次为紫、绿、红
B.从上到下依次为红、绿、紫
C.从上到下依次为绿、红、紫
D.从上到下依次为绿、紫、红
解析:棱镜对不同色光的折射率不同,对红光的折射率小,其偏折角度小,折射出射后在色带的下部。对紫光的折射率大,偏折角度大,出射后在光带的上部。故正确答案为A。
答案:A
6.
如图所示,一个光点S发出一束白光,经三棱镜折射后射入人的眼睛。若人沿着折射光线的反方向观察,通过棱镜可以看到(  )
A.白光点
B.上面为红色光点,下面为紫色光点
C.上面为紫色光点,下面为红色光点
D.看不到光源的像
解析:由光的色散光路图可知C对。
答案:C
7. 雨后太阳光入射到水滴中发生色散而形成彩虹。设水滴是球形的,图中的圆代表水滴过球心的截面,入射光线在过此截面的平面内,a、b、c、d代表四条不同颜色的出射光线,则它们可能依次是(  )
A.紫光、黄光、蓝光和红光
B.紫光、蓝光、黄光和红光
C.红光、蓝光、黄光和紫光
D.红光、黄光、蓝光和紫光
解析:由供选答案知四种光线红、黄、蓝、紫的频率为ν红<ν黄<ν蓝<ν紫,故其折射率n红<n黄<n蓝<n紫,因折射率大,光在折射时,偏折程度大,故太阳光经水滴折射后,在水中传播,从上到下依次为红、黄、蓝、紫,再由光的反射定律,结合光路图可知其反射后从上到下顺序颠倒,因此出射光依次为紫光、蓝光、黄光和红光,B正确,A、C、D均错。
答案:B
8.
一复色光中只含有a、b两种单色光,在真空中a光的波长大于b光的波长。
(1)在真空中,a光的速度________(填“大于”、“等于”或“小于”)b光的速度。
(2)用该复色光做双缝干涉实验时,得到如图所示的部分干涉图样。则实线表示________(填“a”或“b”)光的干涉条纹。
解析:各种单色光在其空中的速度相同,由Δx=λ可知实线表示a光的干涉条纹。
答案:(1)等于 (2)a
9. 用如图所示的实验装置观察光的薄膜干涉现象。图甲是点燃的酒精灯(在灯芯上洒些盐),图乙是竖立的附着一层肥皂液薄膜的金属丝圈。将金属丝圈在其所在的竖直平面内缓慢旋转,观察到的现象是(  )
A.当金属丝圈旋转30°时干涉条纹同方向旋转30°
B.当金属丝圈旋转45°时干涉条纹同方向旋转90°
C.当金属丝圈旋转60°时干涉条纹同方向旋转30°
D.干涉条纹保持原来状态不变
解析:金属丝圈在竖直平面内缓慢旋转时,不影响薄膜上薄下厚的分布,因而干涉条纹保持原来状态不变,D对。
答案:D
10. abc为全反射棱镜,它的主截面是等腰三角形,如图所示。一束白光垂直入射到ac面上,在ab面上发生全反射,若光线入射点O的位置不变,改变光线的入射方向(不考虑自bc面反射的光线)(  )
A.使入射光按图中所示顺时针方向逐渐偏转,如果有色光射出ab面,则红光将首先射出
B.使入射光按图中所示顺时针方向逐渐偏转,如果有色光射出ab面,则紫光将首先射出
C.使入射光按图中所示逆时针方向逐渐偏转,如果有色光射出ab面,则红光将首先射出
D.使入射光按图中所示逆时针方向逐渐偏转,如果有色光射出ab面,则紫光将首先射出
解析:若入射光逆时针偏转,射到ab面时,入射角增大,所有光都发生全反射。若入射光顺时针偏转,射到ab面时,入射角减小。设光在ac面的折射角为θ1,在ab面的入射角为θ2,由几何关系可得:θ2=45°-θ1,由于棱镜对紫光的折射率最大,对红光的折射率最小,则有红光对应的θ2最小,而棱镜对红光的临界角最大,所以红光首先射出,选项A正确。
答案:A
11. 如图所示,某玻璃棱镜的顶角为θ,恰为黄光的临界角,当白光通过棱镜发生色散,在光屏A上形成彩色光带后,把白光的入射角i逐渐减小到零的过程中,在光屏上会观察到(  )
A.最后在B屏上右边是黄光
B.最后在B屏上左边是紫光
C.最后在B屏上右边是紫光
D.最后在B屏上左边是黄光
解析:由于玻璃对各种色光的折射率不同,导致了各种色光的偏折角不同而形成彩色光带(即色散)。玻璃对紫光的折射率最大,紫光的偏折角最大,而紫光的临界角最小,所以首先在EG面上发生全反射后,再从GF面上折射到光屏B上。当i=0时,白光射到EG面上的入射角为θ,此时黄光恰好发生全反射,而频率高于黄光的绿、蓝、紫光均发生全反射到FG面上,它们的入射角相同,折射角最小的是紫光,所以B屏的右边是紫光,由以上分析可知选项C、D正确。
答案:CD
12. 为了减少玻璃表面光的反射损失,在玻璃表面上涂一层折射率为的增透膜,设入射光波长λ=700 nm,为了使这种波长的反射光能最大限度地被减弱,所涂薄膜的最小厚度是________nm。
解析:题中求的是所涂薄膜的最小厚度,它应为光在薄膜中波长的。光在其中波长λ0=λ,所以最小厚度d=λ0=λ= nm=140 nm。
答案:140
13. 如图所示,横截面是直角三角形ABC的三棱镜对红光的折射率为n1,对紫光的折射率为n2,一束很细的白光由棱镜的一个侧面AB垂直射入,从另一个侧面AC折射出来。已知棱镜顶角∠A=30°,AC边平行于光屏MN,且与光屏的距离为L。
(1)画出白光通过棱镜折射的光路图;(出射光线画两条边缘光线,并指明其颜色)
(2)求在光屏MN上得到的可见光光谱的宽度d。
解析:(1)由于光线垂直AB面入射,故在AB面上光线不偏折。在AC面,设红光折射角为β1,紫光折射角为β2,由于n2>n1,所以紫光偏折角度将大于红光,故β2>β1,光谱上方为紫光,下方为红光。光路如图所示。
(2)由折射定律得:n1sin30°=sinβ1,n2sin30°=sinβ2,
则sinβ1=,sinβ2=。
MN上可见光谱的宽度:
d=L(tanβ2-tanβ1)=L(-)=L(-)。
答案:(1)见解析 (2)L(-)
课件83张PPT。课前自主学习课堂合作探究易错警示培优课堂对点练习课后课时精练谢谢观看!04课后巩固训练
1.[2014·江苏高考]某同学用单色光进行双缝干涉实验,在屏上观察到题(甲)图所示的条纹,仅改变一个实验条件后,观察到的条纹如题(乙)图所示。他改变的实验条件可能是(  )
A.减小光源到单缝的距离
B.减小双缝之间的距离
C.减小双缝到光屏之间的距离
D.换用频率更高的单色光源
解析:由Δx=λ可知,为使干涉条纹变宽,可增大双缝与光屏间距,减小双缝之间的距离或使用波长更长,频率更低的单色光,故只有B项正确。
答案:B
2. [2014·福建高考]如图,一束光由空气射向半圆柱体玻璃砖,O点为该玻璃砖截面的圆心,下图能正确描述其光路的是(  )
解析:光束沿玻璃砖半径射向O点,在界面处入射角大于临界角时,发生全反射,小于临界角时,在空气中的折射角大于入射角,A正确,C错误;当光束由空气射向玻璃砖时,由发生全反射的条件可知B错误;在玻璃中的折射角应小于入射角,D错误。
答案:A
3.[2013·浙江高考]与通常观察到的月全食不同,小虎同学在2012年12月10日晚观看月全食时,看到整个月亮是暗红的。小虎画了月全食的示意图,并提出了如下猜想,其中最为合理的是(  )
A.地球上有人用红色激光照射月球
B.太阳照射到地球的红光反射到月球
C.太阳光中的红光经地球大气层折射到月球
D.太阳光中的红光在月球表面形成干涉条纹
解析:月全食时不可能有人用很大能量的红色激光照射月球,故A项错误;只有地球挡住了太阳光,才能形成月全食,不会是太阳光照射到地球,再反射到月球上,故B项错误;太阳光中的红光经地球大气层折射到月球,符合物理原理,故C项正确;太阳光中的红光在月球表面不满足形成干涉的条件,故D项错误。
答案:C
4. [2014·浙江高考]关于下列光学现象,说法正确的是(  )
A.水中蓝光的传播速度比红光快
B.光从空气射入玻璃时可能发生全反射
C.在岸边观察前方水中的一条鱼,鱼的实际深度比看到的要深
D.分别用蓝光和红光在同一装置上做双缝干涉实验,用红光时得到的条纹间距更宽
解析:因为频率f蓝>f红,则n蓝>n红,又因为在水中v=,得到v蓝<v红,则A错。光线由光密介质射向光疏介质时才有可能发生全反射,则B错。在岸边看水中物体时比实际深度浅,则C项正确。Δx=λ,λ红>λ蓝,同一装置L/d相同,所以用红光时条纹间距更宽,D项正确。
答案:CD
5.
[2014·四川高考]如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球。则(  )
A.小球必须位于缸底中心才能从侧面看到小球
B.小球所发的光能从水面任何区域射出
C.小球所发的光从水中进入空气后频率变大
D.小球所发的光从水中进入空气后传播速度变大
解析:设发光小球在P点,如图甲,当发光小球不在缸底中心O时,仍有光线从侧面射出,所以A错误。光从水面射入空气时,当入射角大于临界角时,会发生全反射现象,如图乙,只有在入射角θ小于临界角C的范围内光才能从水面射出,B错误。光从一种介质进入另一种介质时,频率保持不变,C错误。光在水中的传播速度v=,光在空气中的传播速度近似等于真空中的传播速度c,所以D正确。
答案:D
6.[2014·课标全国卷Ⅰ]
一个半圆柱形玻璃砖,其横截面是半径为R的半圆,AB为半圆的直径,O为圆心,如图所示。玻璃的折射率为n=。
(1)一束平行光垂直射向玻璃砖的下表面,若光线到达上表面后,都能从该表面射出,则入射光束在AB上的最大宽度为多少?
(2)一细束光线在O点左侧与O点相距 R处垂直于AB从下方入射,求此光线从玻璃砖射出点的位置。
解析:
(1)在O点左侧,设从E点射入的光线进入玻璃砖后在上表面的入射角恰好等于全反射的临界角θ,则OE区域的入射光线经上表面折射后都能从玻璃砖射出,如图。由全反射条件有sinθ=①
由几何关系有OE=Rsinθ②
由对称性可知,若光线都能从上表面射出,光束的宽度最大为l=2OE③
联立①②③式,代入已知数据得l=R④
(2)设光线在距O点R的C点射入后,在上表面的入射角为α,由几何关系及①式和已知条件得
α=60°>θ⑤
光线在玻璃砖内会发生三次全反射,最后由G点射出,如图。由反射定律和几何关系得
OG=OC=R⑥
射到G点的光有一部分被反射,沿原路返回到达C点射出。
答案:(1)R (2)见解析
7.[2014·山东高考]
如图,三角形ABC为某透明介质的横截面,O为BC边的中点,位于截面所在平面内的一束光线自O以角i入射,第一次到达AB边恰好发生全反射。已知θ=15°,BC边长为2L,该介质的折射率为。求:
(1)入射角i;
(2)从入射到发生第一次全反射的时间(设光在真空中的速度为c,可能用到:sin75°=或tan15°=2-)。
解析:(1)根据全反射定律可知,光线在AB面上P点的入射角等于临界角C,由折射定律得
sinC=①
代入数据得
C=45°②
设光线在BC面上的折射角为r,由几何关系得
r=30°③
由折射定律得
n=④
联立③④式,代入数据得
i=45°⑤
(2)在△OPB中,根据正弦定理得
=⑥
设所用时间为t,光线在介质中的速度为v,得
=vt⑦
v=⑧
联立⑥⑦⑧式,代入数据得
t=L⑨
答案:i=45° (2)L
课件62张PPT。阶段真题训练谢谢观看!