已知有关数据如下表所示,那么该公司明年应怎样安排
新增产品的产量
收地运地 C D 总计
a X吨 200吨
b 300吨
总计 240吨 260吨 500吨
4.我市某乡A,B两村盛产柑橘,A村有柑橘200吨,B村 有柑橘300吨。现在将这些柑橘运到C,B两个冷藏仓库。已知C仓库可储存240吨,D仓库可储存260吨:从A村运到C,D两处的费用分别为每吨20元至25元,从B村运到C,D两处的费用分别为每吨15至18元。设从A村运到C仓库的柑橘质量为x吨,A,B两村运往两仓库的柑橘费用分别为yA元和yB元
(1)请填写下表并求出yA和yB与x之间的
函数关系式
(2) 试讨论A,B两个村中,那个村的运费少;
(3) 考虑到B村的经济承受能力,B村的的柑
橘不超过4830元。在这种情况下,请问怎样调运,才能使两村运费最小?求出最小值。
5.如图,在人民公园人工湖两侧的A,B两点欲建一座观赏桥,由于受
条件限制,无法直接度量A,B间的距离,请你用学过的知识,在
图中设计三种测量方案要求:
(1)画出你设计的测量平面草图;
(2)在图形中标出测量的数据(长度用a,b,c......角度用α,β,γ,
…..表示)并写出测量的依据及AB的表达式。
6.如图,在Rt△ABC中,∠ACB=900, ∠CAB=300,用圆规和直尺
作图,用两种方法把它分成两个三角形,且要求其中一个三
角形是等腰三角形(保留作图痕迹,不要求写作法和证明)
7.如图,某市经济开发区建有B、C、D三家食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900m,AD=BC=1700m。自来水公司已经修好一条自来水主管道AN,B、C两厂之间的公路与自来水管道交于E处,EC=500m。若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元。
(1)要使修建自来水管道的造价最低,这三个工厂的自
来水管道路线应怎样设计?并在图形中画出。
(2)求出各厂所建的自来水管道的最低的造价各是多少?
8.某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种产品共40件,生产A、B两种产品用料情况如下表:
需要甲原料 需要乙原料
一件A产品 7kg 4kg
一件B产品 3kg 10kg
设生产A产品x件,请解答下列
问题:
(1)求x的值,并说明有哪几种符
合题意的生产方案。
(2)若甲种原料50元/kg,乙种原料40元/kg,说明(1)中哪种方案较优?
9.课题研究:现有边长为120cm的正方形铁皮,准备将它设计制作成一个开口的水槽,使水槽能通过的水的流量最大。初三(1)班数学兴趣小组讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大。为此他们对水槽的横截面进行了探索:
(1)方案一:把它折成横截面为直角三角形的水槽(如图①),若∠ACB=900,设AC=xcm,该水槽的横截面面积为ycm2,请你写出y关于x的函数关系(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值是多少?
方案二:把它折成横截面为等腰梯形的水槽(如图②),若∠ABC=1200,请你求出该水槽的横截面面积的最大值,并与方案一中的y最大值比较
(2)假如你是该兴趣小组的成员,请你再提供两种方案,使你所设计的水槽横截面面积更大。画出你设计的草图,标上必要的数据(不要求写出解答过程)
10.正方形通过剪切可以拼成三角形,方法如图1:请你仿上用图示的方法,解答下列问题:
操作设计:
⑴如图2,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形;
⑵如图3,对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形;
⑶如图4,对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形;
5阅读理解型
通过阅读提供的材料,获取信息,理解新概念,然后结合新概念对新问题进行研究,它能有效地考查学生的综合阅读理解的能力。例如安徽省06年第23题,从阅读(学习)能力、作图能力、探究能力、逻辑推理能力等方面对学生初中平面几何知识的全面考查。
一:【要点梳理】
阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点。知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答。这类问题的主要题型有:
(1)阅读特殊范例,推出一般结论;
(2)阅读解题过程,总结解题思路和方法;
(3)阅读新知识,研究新问题等。
这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等。因此,在平时的学习和复习中应透彻理解所学内容。搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法。
二:【例题与练习】
1.我国古代数学家秦九韶在《算书九章》中记述了“三斜求积术”,即已知三角形的
三边长,求它的面积.用现代式子表示即为: HYPERLINK "http://www.1230.org/" EMBED Equation.3 …①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角
形面积的海伦公式:……②(其中).
(1)若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积.
(2)你能否由公式①推导出公式②?请试试.
2.阅读下列材料,并解决后面的问题:在锐角△ABC中,∠A、
∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则
sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.
同理有,.所以………(*)
即:在一个三角形中,各边和它所对角的正弦的比相等.
(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以
求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:
第一步:由条件a、b、∠A ∠B;
第二步:由条件 ∠A、∠B ( http: / / www.1230.org / ) ∠C;
第三步:由条件 c.
3.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为;在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③.
回答下列问题:
(1)在直角坐标系中,用
作图象的方法求出方程
组的解;
(2)用阴影表示 ① ② ③
HYPERLINK "http://www.1230.org/" EMBED Equation.DSMT4 ,所围成的区域.
4.先阅读下列材料,再解答后面的问题材料:23=8,此时,3叫做以2为底8的对数,记为.一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为.
问题:(1)计算以下各对数的值:.
(2)观察(1)中三数4、16、64之间满足怎样的关系式? 之间又满足怎样的关系式?
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
根据幂的运算法则:以及对数的含义证明上述结论.
5.某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.
(1)写出判定扇形相似的一种方法:
若 ,则两个扇形
相似;
(2)有两个圆心角相等的扇形,其中一个半
径为a、弧长为m,另一个半径为2a,则它的弧长为_ ;
(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.
6.阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+,其中n是正整数。现在我们来研究一个类似的问题:1×2+2×3+…=?
观察下面三个特殊的等式
; ;
将这三个等式的两边相加,可以得到1×2+2×3+3×4=
读完这段材料,请你思考后回答:
⑴
⑵
⑶ (只需写出结果)
7.阅读材料,解答问题:如图表示我国农村居民的
小康生活水平实现程度.地处西部的某贫困县,
农村人口约50万,2002年农村小康生活的综合
实现程度才达到68%,即没有达到小康程度的
人口约为(1-68 %)×50万= 16万.
(1)假设该县计划在2002年的基础上,到2004年底,使没有达到小康程度的16万农村人口降至 10.24万,那么平均每年降低的百分率是多少?
(2)如果该计划实现,2004年底该县农村小康进程接近图2-7-2中哪一年的水平?(假设该县人口2年内不变)
8.如图所示,甲、乙两辆大型货车于下午2:00同时从A地出发驶往P市,甲车沿一条公路向北偏东60o方向行驶,直达P市,其速度为30千米/时;乙车先沿一条公路向正东方向行驶半小时后到达B地,卸下部分货物,再沿一条通向
东北方向的公路驶往P市,其速度始终为40千米/时.
⑴ 设出发后经过t小时,甲车与P市的距离为s千米,求s与t之
间的函数表达式,并写出自变量t的取值范围.
⑵ 已知在P市新建的移动通讯接收发射塔,其信号覆盖面积只可
达P市周围方圆30千米的区域(包括边缘地带人除此之外,该地区无其他发射塔.故甲、乙两车司机只能靠P市发射塔进行手机通话联系,问甲、乙两车司机从什么时刻开始可取得联系(精确到分钟)
9.阅读下面材料:
在计算3+5+ 7+ 9 + 11+13 +15+17+19+21时,我们发现,从第一个数开始,以后 的每个数与它的前一个数的差都是一个相同的定值,具有这种规律的一列数,除了直接相加外,我们还可以用公式来计算它们的和(公式中的n表示数的个数,a表示第一个数的值,d表示这个差的定值),那么3+5+ 7+ 9 + 11+13 +15+17+19+21=×2=120
用上面的知识解决下列问题:为了保护长
江,减少水土流失,我市某县决定对原有的坡荒地进行退耕还林,从1995年起在坡荒地上植树造林,以后每年又比上一年多植相同面积的树木改造坡荒地,由于每年因自然灾害,树木成活率,人为因素等的影响,都有相当数量的新坡荒地产生,上表为1995、1996、1997三年的坡荒地面积和植树的面积的统计数据,假设坡荒地全部种上树后,不再水土流失形成新的坡荒地.问到哪一年,可以将全县的所有坡荒地全部种上树木?
10.如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫作位似三角形.它们的相似比又
称为位似比,这个点叫做位似中心.利用三角形的
位似可以将一个三角形缩小或放大.
⑴ 选择;如图⑴所示,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点.则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为( )A.2,点P;B.,点P ;C.2,点O ;D.,点O
⑵ 如图⑵所示,用下面的方法可以画面AOB的内接等边三角形.阅读后证明相应问题:
画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上; ②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则ΔC′D′E′是△AOB的内接三角形, 求证:△C′D′E′是等边三角形.
6运动变化型
在初中数学中与“动”有关的问题一般都是教学中的难点,这类试题以运动的点、线段、角或图形为基本的条件,给出一个或多个变量,要求确定变量与其他量之间的关系,在一定条件下,进行相关的几何计算或综合性解答。解决这类问题,一般要根据图形变化的过程,对不同的情况进行分类求解,其关键是寻求变化过程中不变的等量关系和变量关系。
【例题与练习】
1、河北(05)图15—1至15—7中的网格图均是20×20的等距网格图(每个小方格的边长均为1个单位长).侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的 )以每秒1个单位长的速度在铁路线MN上通过时,列车将阻挡王凯的部分视线,在区域MNCD内形成盲区(不考虑列车的宽度和车厢间的缝隙).设列车车头运行到M点的时刻为0,列车从M点向N点方向运行的时间为t(秒).
(1)在区域MNCD内,请你针对图15—1,图15—2,图15—3,图15—4中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影.
(2)只考虑在区域ABCD内形成的盲区.设在这个区域内的盲区面积是y(平方单位).
①如图15—5,当5≤t≤10时,请你求出用t表示y的函数关系式;
②如图15-6,当10≤t≤15时,请你求出用t表示y的函数关系式;
③如图15-7,当15≤t≤20时,请你求出用t表示y的函数关系式;
④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况.
(3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小的变化情况提出一个综合的猜想(问题(3)是额外加分题,加分幅度为1~4分).
2、河北(06)图14-1至图14-7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图14-1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图14-1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图14-2和图14-3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图14-4,当1≤x≤3.5时,求y与x的函数关系式;
②如图14-5,当3.5≤x≤7时,求y与x的函数关系式;
③如图14-6,当7≤x≤10.5时,求y与x的函数关系式;
④如图14-7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)
3、(07河北)如图16,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC ?
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.
4、如图,点E在正方形ABCD的边CD上运动,AC与BE交于点F。
(1)如图①,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比;
(2)如图②,当点E运动到CE∶ED=2∶1时,求△ABF与四边形ADEF的面积之比;
(3)当点E运动到CE∶ED=3∶1时,写出△ABF与四边形ADEF的面积之比;当点E运动到CD∶ED=n∶1(n是正整数)时,猜想△ABF与四边形ADEF的面积之比(只写结果,不要求写出计算过程);
(4)请你利用上述图形,提出一个类似的问题(根据提出的问题给附加分,最多4分,记入总分,但总分不超过120分)。
7实验操作型
通过现场操作实践,或根据已有实验操作经验,或根据语言描述实验操作过程,从中获得有关结论,或应用有关结论的一类试题,也是中考热点题型之一。其主要涉及图形的折叠与旋转、几何作图与设计、测量等。
一:【要点梳理】
平面图形的折叠问题是近几年中考试题中出现次数较多题型.在解答这类问题时,一般先作出折叠前后的图形形状及位置,然后再利用轴对称性质和其他相关知识进行解题
二:【例题与练习】
1.选择
(1)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′
C′的位置,若∠EFB=65°,则∠AED′等于( )
A.50° B.55° C.60° D.65°
(2)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )
A.矩形 B.三角形
C.梯形 D.菱形
(3)小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )
(4)如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的处。得到(图乙),再延长交AD于F,所得到的是( )
A. 等腰三角形
B. 等边三角形
C. 等腰直角三角形
D. 直角三角形
(5)将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
(6)如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )
(7)如图,已知BC为等腰三角形纸片ABC的底边,
AD⊥BC,AD=BC. 将此三角形纸片沿AD剪开,
得到两个三角形,若把这两个三角形拼成一
个平面四边形,则能拼出互不全等的四边形的
个数是( )
A. 1 B. 2 C. 3 D. 4
(8)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则与 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A. B.
C. D.
2.填空
(1)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.
(2)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是
(3)亲爱的同学们,在我们的生活中处处有数学的身影.请看图,
折叠一张三角形纸片,把三角形的三个角拼在一起,就得到
一个著名的几何定理,请你写出这一定理的结论:“三角
形的三个内角和等于_______°.”
(4)同学们肯定天天阅读报纸吧 我国的报纸一般都有一个共同的特征:每次对折后,所得的长方形和原长方形相似,问这些报纸的长和宽的比值是
3.用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中
点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图
形.
(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程的两个实数根,试求出原矩形纸片的面积.
4.在一张长12cm、宽5cm的矩形纸片内,
要折出一个菱形.李颖同学按照取两组
对边中点的方法折出菱形EFGH(见方案一),
张丰同学沿矩形的对角线AC折出∠CAE=∠DAC,
∠ACF=∠ACB的方法得到菱形AECF(见方案
二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?
5.如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它
剪成若干个扇形面,操作过程如下:第1次剪裁,将圆形纸板等
分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等
分成4个扇形;以后按第2次剪裁的作法进行下去.
(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法).
等分圆及扇形面的次数(n) 1 2 3 4 … n
所得扇形的总个数(S) 4 7 …
(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(S)填入下表.
(3)请你推断,
能不能按上
述操作过程,将原来的圆形纸板剪成33个扇形?为什么?
6.如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪
掉,得一四边形A1B1C1D1.试问怎样剪,才能使剩下的图形
仍为正方形,且剩下图形的面积为原正方形面积的,请说
明理由(写出证明及计算过程).
8开放型
开放题的题目无论是条件、结论以及解题的策略或方法均可展开、发散,所以解决此类问题没有一种固定的模式可循。但是,根据题意,寻找一般思考的规律还是可以找到解题的钥匙的,这类试题一般可归纳为条件开放型、结论开放型、条件和结论同时开放等三种基本题型
1条件开放型:没有确定已知条件的开发问题为条件开放题。在题目要求的结论下,请你补充一些条件,使得适合题意,这类题强调的是题设的多样性。
2结论开放型:没有确定结果的开发问题为结论开发题。题目给出了确定的条件,但没有确定的结论或者题设的条件去寻找不唯一的其他结论,这类体现了如何根据条件起探索结论的多样性
3条件结论开发型:根据条件,由因导果可有多种不同的思考途径,解题时可有多种方法,常见的策略开放、情景开放等,这类题目强调的是解决实际问题的数学方法和思考的多样性。
一:【要点梳理】
开放题的题目无论是条件、结论以及解题的策略或方法均可展开、发散,所以解决此类问题没有一种固定的模式可循。但是,根据题意,寻找一般思考的规律还是可以找到解题的钥匙的,这类试题一般可归纳为条件开放型、结论开放型、条件和结论同时开放等三种基本题型
1条件开放型:没有确定已知条件的开发问题为条件开放题。在题目要求的结论下,请你补充一些条件,使得适合题意,这类题强调的是题设的多样性。
2结论开放型:没有确定结果的开发问题为结论开发题。题目给出了确定的条件,但没有确定的结论或者题设的条件去寻找不唯一的其他结论,这类体现了如何根据条件起探索结论的多样性
3条件结论开发型:根据条件,由因导果可有多种不同的思考途径,解题时可有多种方法,常见的策略开放、情景开放等,这类题目强调的是解决实际问题的数学方法和思考的多样性
二:【例题与练习】
1.用几何图形(一个三角形,两条平行线,一个半圆)作为结构,尽可能构造独特且有意义的图形,并写上一两句贴切、诙谐的解说词如上图(至少两幅图)
2.如图,点B在AE上,∠CAB=∠DAB要使△ABC≌△ABD
可补充的一个条件是:__________(写出一个即可)
3.请你设计一种有关于x,y的运算,使得:当x=3时, y=8时:当x=4时,y=6
4.一次数学活动课,老师组织学生到野外测量一个池塘的宽度(既图中A,B间的距离),在讨论探究测量方法时,同学们发现有多种方法,现根据所学知识,设计出两种测量方案,要求画出测量示意图,并简要说明测量方法和计数依据
5.李叔叔想要检测雕塑底座正四边形ABCD是否是矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD是否为矩形
6.选择题
(1) 已知道三角形的三边长分别为4,5,x,则x不可能是( )
A.3 B.5 C.7 D.9
(2)点A,B,C,D在同一平面内,从①AB平行CD;②AB=CD;③BC平行AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有( )
A.2种 B.3钟 C.4种 D.5种
7.有一块三角形的地,现要平均分给四农户种植(即四等分三角形面积).请你在图上作出分法(不写作法,保留作图痕迹).
8.如图所示,A,B是4x5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出以A,B,C为顶点的三角形是等腰三角形的所有格点C的位置.
9.在直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷
一枚均匀的正四面体塞子,如图所示,它有四个顶点,各顶点的点数
分别是1至4这四个数中的一个,每个顶点朝上的机会是相同的,
连续抛掷两次,第一次的点数作为点P的横坐标,第二次的点数作
为点P的纵坐标.
(1)求点P落在正方形ABCD面上(含有边界)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落
在正方形ABCD面上的概率为0.75 若存在,指出其中的一种平移
方式;若不存在,请说明理由;
(3)将正方形ABCD平移(上下、左右)整数概率个单位,则是否存在一
种平移,使得点P落在正方形ABCD面上的概率为5/36 如果存在,请指出其中的一种平移方式;如果不存在,请说明理由
10.问题背景:某课外学习小组在一次学习研讨中,得到了如下三个命题:
命题一:如图①,在正三角形中ABC中,M,N分别是AC,AB上的点,BM于CN相交于点O,若∠BON=60°,则BM=CN.
命题二:如图②,在正方形ABCD中,MN分别是CD,AD上的点,BM于CN相交于点O,若∠BON=90°,则BM=CN.
命题三:如图③,在正方形ABCDE中,MN分别是CD,DE上的点,BM于CN相交于点O,若∠BON=108°,则BM=CN.
完成下列探索:
(1)请在图③中画出一条于CN相等的线段DH,使点H在正五边形的边上,且于CN相交所成的一个角是108°,这样的线段有几条(不必写出画法,不要求证明)
(2)如图④,在正五边形ABCDE中,M,N分别是DE,EA上的点,BM于CN相交与点0,若∠BON=108°,请问结论BM=CN是否成立 若成立,请给予证明,若不成立,请说明理由.
C
D
P
N
M
B
A
Q
O
图15-6
C
D
P
N
M
A
Q
O
图15-7
B
C
D
P
N
M
B
A
图15-1
Q
O
C
D
P
N
M
B
A
Q
图15-2
O
C
D
P
N
M
B
A
Q
图15-3
O
C
D
P
N
M
B
A
Q
图15-4
O
C
D
P
N
M
B
A
图15-5
Q
O
图14-1
E
C
B
A(P)
D
F
G
H
M
Q
N
O
D
C
C
B
A
D
O
C
B
A
D
O
H
E
O
N
M
G
F
P
Q
A
B
图14-4
图14-3
图14-2
图14-5
E
C
B
A
D
F
G
H
M
Q
N
O
P
图14-6
E
C
B
A
D
F
G
H
M
Q
N
O
P
图14-7
E
C
B
A
D
F
G
H
M
Q
N
O
P
D
E
K
P
Q
C
B
A
图16
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
D
E
E
F
F
(第25题图)
(图①)
(图②)
(备用图)
(备用图)
C
D
E
B
A
图 (2)
图(1)
PAGE
5