中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座二 相似
专题07 相似单元总结与例题讲析
(
课标要求
)
(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似。了解相似多边形和相似比。
(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
(4)了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。 *了解相似三角形判定定理的证明。
(5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。
(6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。
(7)会利用图形的相似解决一些简单的实际问题。
(
知识点归纳
)
1. 图形的相似
(1) 形状相同的图形
①表象:大小不等,形状相同.
②实质:各对应角相等、各对应边成比例.
(2) 相似多边形
(3) 相似比:相似多边形对应边的比
2.三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似。
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
5. 相似三角形的应用
(1) 测高(不能直接使用皮尺或刻度尺量的)
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决.
(2) 测距(不能直接测量的两点间的距离)
测量不能到达两点间的距离,常构造相似三角形求解.
(3)其他方面。
6. 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比;对应线段平行或者在 一条直线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
(4) 平面直角坐标系中的位似
当位似图形在原点同侧时,其对应顶点的坐标的比为 k;当位似图形在原点两侧时,对应顶点的坐标的比为-k.
(
记忆方法
)
(
考点
例题讲析
)
考点一 相似三角形的判定和性质
【例题1】如图,四边形为菱形,点E在的延长线上,.
(1)求证:;
(2)当时,求的长.
【例题2】(2023四川内江)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为( )
A. 1 B. C. 2 D. 3
考点二 相似的应用
【例题3】如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q点在BC上.
(1)当△PQC的面积是四边形PABQ面积的时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.
【例题4】 (2023浙江绍兴)如图,在中,是边上的点(不与点,重合).过点作交于点;过点作交于点.是线段上的点,;是线段上的点,.若已知的面积,则一定能求出( )
A. 的面积 B. 的面积
C. 的面积 D. 的面积
考点三 位似的性质及应用
【例题5】如图,与位似,点O是它们的位似中心,且位似比为1∶2,则与的周长之比是( )
A. 1∶2 B. 1∶4 C. 1∶3 D. 1∶9
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座二 相似
专题07 相似单元总结与例题讲析
(
课标要求
)
(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似。了解相似多边形和相似比。
(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
(4)了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。 *了解相似三角形判定定理的证明。
(5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。
(6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。
(7)会利用图形的相似解决一些简单的实际问题。
(
知识点归纳
)
1. 图形的相似
(1) 形状相同的图形
①表象:大小不等,形状相同.
②实质:各对应角相等、各对应边成比例.
(2) 相似多边形
(3) 相似比:相似多边形对应边的比
2.三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似。
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
5. 相似三角形的应用
(1) 测高(不能直接使用皮尺或刻度尺量的)
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决.
(2) 测距(不能直接测量的两点间的距离)
测量不能到达两点间的距离,常构造相似三角形求解.
(3)其他方面。
6. 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比;对应线段平行或者在 一条直线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
(4) 平面直角坐标系中的位似
当位似图形在原点同侧时,其对应顶点的坐标的比为 k;当位似图形在原点两侧时,对应顶点的坐标的比为-k.
(
记忆方法
)
(
考点
例题讲析
)
考点一 相似三角形的判定和性质
【例题1】如图,四边形为菱形,点E在的延长线上,.
(1)求证:;
(2)当时,求的长.
【答案】(1)见解析 (2)AE=9
【解析】【分析】(1)根据四边形ABCD是菱形,得出,,根据平行线的性质和等边对等角,结合,得出,即可证明结论;
(2)根据,得出,代入数据进行计算,即可得出AE的值.
【小问1详解】证明:∵四边形ABCD为菱形,
∴,,
,,
∵,
∴,
∴.
【小问2详解】
∵,
∴,
即,
解得:.
【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出,是解题关键.
【例题2】(2023四川内江)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为( )
A. 1 B. C. 2 D. 3
【答案】C
【解析】由三等分点的定义与平行线的性质得出,,,是的中位线,易证,得,解得,则.
【详解】、为边的三等分点,,
,,,
,是的中位线,
,
,
,
,即,
解得:,
,
故选:C.
【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.
考点二 相似的应用
【例题3】如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q点在BC上.
(1)当△PQC的面积是四边形PABQ面积的时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.
【答案】见解析
【解析】(1)由于PQ∥AB,故△PQC∽△ABC,当△PQC的面积是四边形PABQ面积的时,△CPQ与△CAB的面积比为1∶4,根据相似三角形的面积比等于相似比的平方,可求出CP的长;(2)由于△PQC∽△ABC,根据相似三角形的性质,可用CP表示出PQ和CQ的长,进而可表示出AP、BQ的长.根据△CPQ和四边形PABQ的周长相等,可将相关的各边相加,即可求出CP的长.
解:(1)∵PQ∥AB,∴△PQC∽△ABC,
∵S△PQC=S四边形PABQ,
∴S△PQC∶S△ABC=1∶4,
∵=,
∴CP=CA=2;
(2)∵△PQC∽△ABC,
∴==,∴=,∴CQ=CP.
同理可知PQ=CP,
∴C△PCQ=CP+PQ+CQ=CP+CP+CP=3CP,
C四边形PABQ=PA+AB+BQ+PQ=(4-CP)+AB+(3-CQ)+PQ
=4-CP+5+3-CP+CP
=12-CP,
∴12-CP=3CP,∴CP=12,∴CP=.
方法总结:由相似三角形得出线段的比例关系,再根据线段的比例关系解决面积、线段的问题是解题的关键.
【例题4】 (2023浙江绍兴)如图,在中,是边上的点(不与点,重合).过点作交于点;过点作交于点.是线段上的点,;是线段上的点,.若已知的面积,则一定能求出( )
A. 的面积 B. 的面积
C. 的面积 D. 的面积
【答案】D
【解析】如图所示,连接,证明,得出,由已知得出,则,又,则,进而得出,可得,结合题意得出,即可求解.
【详解】如图所示,连接,
∵,,
∴,,,.
∴,.
∴.
∵,,
∴,
∴.
∴.
又∵,
∴.
∴.
∵
∴.
∴.
∴.
∵,
∴.
∵,
∴.
故选:D.
【点睛】本题考查了相似三角形的知识,解题的关键是掌握相似三角形的性质与判定,平行线的判定和性质,等面积转换.
考点三 位似的性质及应用
【例题5】如图,与位似,点O是它们的位似中心,且位似比为1∶2,则与的周长之比是( )
A. 1∶2 B. 1∶4 C. 1∶3 D. 1∶9
【答案】A
【解析】根据位似图形是相似图形,位似比等于相似比,相似三角形的周长比等于相似比即可求解.
∵与位似
∴
∵与的位似比是1:2
∴与的相似比是1:2
∴与的周长比是1:2
【点睛】本题考查了位似变换,解题的关键是掌握位似变换的性质和相似三角形的性质.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)