讲座一反比例函数:专题06 反比例函数实际应用 (原卷版+解析版)

文档属性

名称 讲座一反比例函数:专题06 反比例函数实际应用 (原卷版+解析版)
格式 zip
文件大小 992.0KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-11-17 06:46:31

文档简介

中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座一 反比例函数
专题06 反比例函数实际应用
(
课标要求
)
1. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
2. 能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数的图象、性质的综合能力。
3. 能够根据实际问题确定自变量的取值范围。
4.学习用反比例函数知识解决在物理、化学等学科实际问题。
(
知识点解读
)
实际问题与反比例函数
1.分析实际情境→建立函数模型→明确数学问题
2.实际问题中的两个变量往往都只能取非负值;作实际问题中的函数图像时,横、纵坐标的单位长度不一定相同
3.在解决反比例函数相关的实际问题中,若题目要求“至多”、“至少”,可以利用反比例函数的增减性来解答 .
4.解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.
(
思维方法
)
用反比例函数解决实际问题的步骤
(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;
(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;
(3)列:由题目中的已知条件列出方程,求出待定系数;
(4)写:写出函数解析式,并注意解析式中变量的取值范围;
(5)解:用函数解析式去解决实际问题.
(
考点
例题讲析
)
【例题1】(2023湖北鄂州) 如图,在平面直角坐标系中,直线与双曲线(其中)相交于,两点,过点B作轴,交y轴于点P,则的面积是_______.
【例题2】 根据物理学知识,在压力不变的情况下,某物体承受的压强是它的受力面积的反比例函数,其函数图象如图所示,当时,该物体承受的压强p的值为_________ Pa.
【例题3】南宁至玉林高速铁路已于去年开工建设,玉林辆隧道是全线控制性隧道,首期打通共有土石方总量600千立方米,总需要时间y天,且完成首期工程限定时间不超过600天.设每天打通土石方x千立方米.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?
(
考点精炼
)
1.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂. 小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是和,则动力(单位:)关于动力臂l(单位:)的函数解析式正确的是( )
A. B. C. D.
2. (2023浙江台州)科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度h(单位:cm)是液体的密度(单位:)的反比例函数,当密度计悬浮在密度为的水中时,.
(1)求h关于的函数解析式.
(2)当密度计悬浮在另一种液体中时,,求该液体的密度.
3.近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m.
(1)试求眼镜度数y与镜片焦距x之间的函数关系式;
(2)求1 000度近视眼镜镜片的焦距.
4. 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和 0.5 m.
(1) 动力 F 与动力臂L有怎样的函数关系 当动力臂为1.5 m时,撬动石头至少需要多大的力
(2) 若想使动力 F 不超过题 (1) 中所用力的一半,则动力臂l至少要加长多少
5. 用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.
(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;
(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?
6. 病人按规定的剂量服用某种药物,测得服药后 2 小时,每毫升血液中的含药量达到最大值为 4 毫克. 已知服药后,2 小时前每毫升血液中的含药量 y (单位:毫克)与时间 x (单位:小时) 成正比例;2 小时后 y 与 x 成反比例 (如图). 根据以上信息解答下列问题:
(1)求当 0 ≤ x ≤2 时,y 与 x 的函数解析式;
(2) 求当 x > 2 时,y 与 x 的函数解析式;
(3)若每毫升血液中的含药量不低于 2 毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?
7. 某商场出售一批进价为2元的贺卡,在销售中发现此商品的日售价x(元)与销售量y(张)之间有如下关系:
x(元) 3 4 5 6
y(张) 20 15 12 10
(1)猜测并确定y与x的函数关系式;
(2)当日销售单价为10元时,贺卡的日销售量是多少张?
(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大并求出最大利润.
8. 如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.已知第12分钟时,材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?
9.(2023湖南郴州) 在实验课上,小明做了一个试验.如图,在仪器左边托盘(固定)中放置一个物体,在右边托盘(可左右移动)中放置一个可以装水的容器,容器的质量为.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘与点的距离()(),记录容器中加入的水的质量,得到下表:
托盘与点的距离 30 25 20 15 10
容器与水的总质量 10 12 15 20 30
加入的水的质量 5 7 10 15 25
把上表中的与各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的关于的函数图象.
(1)请在该平面直角坐标系中作出关于的函数图象;
(2)观察函数图象,并结合表中的数据:
①猜测与之间的函数关系,并求关于的函数表达式;
②求关于的函数表达式;
③当时,随的增大而_______(填“增大”或“减小”),随的增大而_____(填“增大”或“减小”),的图象可以由的图象向_____(以“上”或“下”或“左”或“右”)平移得到.
(3)若在容器中加入的水的质量(g)满足,求托盘与点的距离(cm)的取值范围.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座一 反比例函数
专题06 反比例函数实际应用
(
课标要求
)
1. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
2. 能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数的图象、性质的综合能力。
3. 能够根据实际问题确定自变量的取值范围。
4.学习用反比例函数知识解决在物理、化学等学科实际问题。
(
知识点解读
)
实际问题与反比例函数
1.分析实际情境→建立函数模型→明确数学问题
2.实际问题中的两个变量往往都只能取非负值;作实际问题中的函数图像时,横、纵坐标的单位长度不一定相同
3.在解决反比例函数相关的实际问题中,若题目要求“至多”、“至少”,可以利用反比例函数的增减性来解答 .
4.解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.
(
思维方法
)
用反比例函数解决实际问题的步骤
(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;
(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;
(3)列:由题目中的已知条件列出方程,求出待定系数;
(4)写:写出函数解析式,并注意解析式中变量的取值范围;
(5)解:用函数解析式去解决实际问题.
(
考点
例题讲析
)
【例题1】(2023湖北鄂州) 如图,在平面直角坐标系中,直线与双曲线(其中)相交于,两点,过点B作轴,交y轴于点P,则的面积是_______.
【答案】
【解析】把代入到可求得的值,再把代入双曲线函数的表达式中,可求得的值,进而利用三角形的面积公式进行求解即可.
【详解】∵直线与双曲线(其中)相交于,两点,

∴,
∴双曲线的表达式为:,,
∵过点作轴,交轴于点,
∴,
∴,
故答案为.
【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求反比例函数,反比例函数图象上点的坐标特征,三角形的面积,数形结合是解答此题的关键.
【例题2】 根据物理学知识,在压力不变的情况下,某物体承受的压强是它的受力面积的反比例函数,其函数图象如图所示,当时,该物体承受的压强p的值为_________ Pa.
【答案】400
【解析】先根据待定系数法求出反比例函数解析式,再把S=0.25代入,问题得解.
设反比例函数的解析式为,
由图象得反比例函数经过点(0.1,1000),
∴,
∴反比例函数的解析式为,
当S=0.25时,.
【点睛】考查反比例函数的应用,理解题意,利用待定系数法求出反比例函数解析式是解题关键.
【例题3】南宁至玉林高速铁路已于去年开工建设,玉林辆隧道是全线控制性隧道,首期打通共有土石方总量600千立方米,总需要时间y天,且完成首期工程限定时间不超过600天.设每天打通土石方x千立方米.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?
【答案】(1)(0【分析】(1)根据“工作时间=总工作量÷每天工作量”,即可得出y关于x的函数关系式;
(2)根据工期比原计划提前了100天列方程求解即可.
【解析】(1)∵共有土石方总量600千立方米,∴(0(2)由题意得,解得x1=1,x2=(负值舍去),
经检验x=1是原分式方程的解1+0.2=1.2千立方米,600÷1.2=500天.
答:实际挖掘了500天才能完成首期工程.
【点睛】本题考查了反比例函数的应用,以及分式方程的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据工期比原计划提前了100天列出方程.
(
考点精炼
)
1.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂. 小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是和,则动力(单位:)关于动力臂l(单位:)的函数解析式正确的是( )
A. B. C. D.
【答案】B
【解析】根据所给公式列式,整理即可得答案.
∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,∴动力(单位:)关于动力臂(单位:)的函数解析式为:
,则.
【点睛】本题考查了反比例函数的应用,弄清题意,正确分析各量间的关系是解题的关键.
2. (2023浙江台州)科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度h(单位:cm)是液体的密度(单位:)的反比例函数,当密度计悬浮在密度为的水中时,.
(1)求h关于的函数解析式.
(2)当密度计悬浮在另一种液体中时,,求该液体的密度.
【答案】(1).
(2)该液体的密度为.
【解析】【分析】(1)由题意可得,设,把,代入解析式,求解即可;
(2)把代入(1)中的解析式,求解即可.
【详解】(1)设h关于的函数解析式为,
把,代入解析式,得.
∴h关于的函数解析式为.
(2)把代入,得.
解得:.
答:该液体的密度为.
【点睛】此题考查了反比例函数的应用,待定系数法求反比例函数解析式,解题的关键是理解题意,灵活利用反比例函数的性质进行求解.
3.近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m.
(1)试求眼镜度数y与镜片焦距x之间的函数关系式;
(2)求1 000度近视眼镜镜片的焦距.
【答案】(1)y=100/x (2) 0.1m.
【解析】把实际问题转化为求反比例函数的解析式的问题.
(1)设y=k/x,把x=0.25,y=400代入,得400=k/0.25,
所以,k=400×0.25=100,即所求的函数关系式为y=100/x.
(2)当y=1000时,1000=100/x,解得x=0.1m.
4. 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N 和 0.5 m.
(1) 动力 F 与动力臂L有怎样的函数关系 当动力臂为1.5 m时,撬动石头至少需要多大的力
(2) 若想使动力 F 不超过题 (1) 中所用力的一半,则动力臂l至少要加长多少
【答案】(1)400N(2)1.5m
【解析】(1)根据“杠杆原理”,得 FL=1200×0.5,
∴ F 关于L的函数解析式为F =600/L
对于函数F =600/L,当 L=1.5 m时,F =600/1.5=400 N,此时杠杆平衡. 因此撬动石头至少需要400N的力.
(2)对于函数F =600/L,当 L>0 时, L越大,F越小. 因此,若想用力不超过 400 N 的一半,则动力臂至少要加长1.5 m.
对于函数F =600/L,当 F =200 N时,L=600/200=3 m
则动力臂l至少要加长为3 m-1.5 m=1.5m
5. 用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.
(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;
(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?
【答案】小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.
【解析】设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.
(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,
将和分别代入两个关系式得:
1.5=,2=,解得:k1=1.5,k2=2.
∴小红的函数关系式是=,小敏的函数关系式是.
(2)把y=0.5分别代入两个函数得:
=0.5,=0.5,
解得:x1=3,x2=4,
10×3=30(升),5×4=20(升).
6. 病人按规定的剂量服用某种药物,测得服药后 2 小时,每毫升血液中的含药量达到最大值为 4 毫克. 已知服药后,2 小时前每毫升血液中的含药量 y (单位:毫克)与时间 x (单位:小时) 成正比例;2 小时后 y 与 x 成反比例 (如图). 根据以上信息解答下列问题:
(1)求当 0 ≤ x ≤2 时,y 与 x 的函数解析式;
(2) 求当 x > 2 时,y 与 x 的函数解析式;
(3)若每毫升血液中的含药量不低于 2 毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?
【答案】见解析。
【解析】(1)当 0 ≤ x ≤2 时,y 与 x 成正比例函数关系.
设 y =kx,由于点 (2,4) 在线段上,
所以 4=2k,k=2,即 y=2x.
(2)当 x > 2时,y 与 x 成反比例函数关系,
设y=k/x
由于点 (2,4) 在反比例函数的图象上,
所以4=k/2,解得 k =8
y=8/x
(3)当 0≤x≤2 时,含药量不低于 2 毫克,即 2x≥2,
解得x≥1,∴1≤x≤2;
当 x>2 时,含药量不低于 2 毫克,
即 8/x ≥ 2,解得 x ≤ 4. ∴2< x ≤4.
所以服药一次,治疗疾病的有
效时间是 1+2=3 (小时).
7. 某商场出售一批进价为2元的贺卡,在销售中发现此商品的日售价x(元)与销售量y(张)之间有如下关系:
x(元) 3 4 5 6
y(张) 20 15 12 10
(1)猜测并确定y与x的函数关系式;
(2)当日销售单价为10元时,贺卡的日销售量是多少张?
(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大并求出最大利润.
【答案】见解析
【解析】(1)要确定y与x之间的函数关系式,通过观察表中数据,可以发现x与y的乘积是相同的,都是60,所以可知y与x成反比例,用待定系数法求解即可;(2)代入x=10求得y的值即可;(3)首先要知道纯利润=(日销售单价x-2)×日销售数量y,这样就可以确定W与x的函数关系式,然后根据销售单价最高不超过10元,就可以求出获得最大日销售利润时的日销售单价x.
解:(1)从表中数据可知y与x成反比例函数关系,设y=(k为常数,k≠0),把点(3,20)代入得k=60,∴y=;
(2)当x=10时,y==6,∴日销售单价为10元时,贺卡的日销售量是6张;
(3)∵W=(x-2)y=60-,又∵x≤10,∴当x=10时,W取最大值,W最大=60-=48(元).
方法总结:本题考查了根据实际问题列反比例函数的关系式及求最大值,解答此类题目的关键是准确理解题意.
8. 如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.已知第12分钟时,材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?
【答案】见解析
【解析】(1)首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例函数关系.将题中数据代入可求得两个函数的关系式;(2)把y=12代入y=4x+4得x=2,代入y=得x=14,则对该材料进行特殊处理所用的时间为14-2=12(分钟).
解:(1)设加热停止后反比例函数表达式为y=,∵y=过(12,14),得k1=12×14=168,则y=;当y=28时,28=,解得x=6.设加热过程中一次函数表达式为y=k2x+b,由图象知y=k2x+b过点(0,4)与(6,28),∴解得∴y=
(2)当y=12时,y=4x+4,解得x=2.由y=,解得x=14,所以对该材料进行特殊处理所用的时间为14-2=12(分钟).
方法总结:现实生活中存在大量成反比例函数关系的两个变量,解答此类问题的关键是首先确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
9.(2023湖南郴州) 在实验课上,小明做了一个试验.如图,在仪器左边托盘(固定)中放置一个物体,在右边托盘(可左右移动)中放置一个可以装水的容器,容器的质量为.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘与点的距离()(),记录容器中加入的水的质量,得到下表:
托盘与点的距离 30 25 20 15 10
容器与水的总质量 10 12 15 20 30
加入的水的质量 5 7 10 15 25
把上表中的与各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的关于的函数图象.
(1)请在该平面直角坐标系中作出关于的函数图象;
(2)观察函数图象,并结合表中的数据:
①猜测与之间的函数关系,并求关于的函数表达式;
②求关于的函数表达式;
③当时,随的增大而_______(填“增大”或“减小”),随的增大而_____(填“增大”或“减小”),的图象可以由的图象向_____(以“上”或“下”或“左”或“右”)平移得到.
(3)若在容器中加入的水的质量(g)满足,求托盘与点的距离(cm)的取值范围.
【答案】(1)作图见解析;
(2)①;②;③减小,减小,下;
(3).
【解析】【分析】(1)将平面直角坐标系中的点用平滑曲线连接即可;
(2)①观察图象可知,函数可能是反比例函数,设,把,的坐标代入,得,再检验其余各个点是否满足即可;②根据可能与成反比例,设,即可得解;③跟图像结合解析式作答即可.
(3)利用反比例函数的性质即可解决问题.
【详解】(1)函数图象如图所示,
(2)①观察图象可知,可能是反比例函数,设,
把的坐标代入,得,
经检验,其余各个点坐标均满足,
∴关于的函数表达式;
②观察表格以及①可知,可能与成反比例,设,
把的坐标代入,得,
经检验,其余各个点坐标均满足,
∴关于的函数表达式;
③由图图像可知,当时,随的增大而减小,随的增大而减小,的图象可以由的图象向下平移得到,
故答案为:减小,减小,下;
(3)当时,解得,
当时,解得,
∴托盘与点的距离()的取值范围.
【点睛】本题考查反比例函数的应用、描点法画图等知识,解题的关键是熟练掌握反比例函数的性质,属于基础题,中考常考题型.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)