讲座一反比例函数:专题04 求解反比例函数的k值(原卷版+解析版)

文档属性

名称 讲座一反比例函数:专题04 求解反比例函数的k值(原卷版+解析版)
格式 zip
文件大小 1020.1KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-11-17 17:47:22

文档简介

中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座一 反比例函数
专题04 求解反比例函数的k值
(
课标要求
)
1. 理解反比例函数的系数 k 的几何意义,并将其灵活运用于坐标系中图形的面积计算中.
2. 体会“数”与“形”的相互转化,学习数形结合的思想方法,进一步提高对反比例函数相关知识的综合运用能力.
(
知识点解读
)
1.反比例函数解析式中 k 的几何意义
对于反比例函数y=k/x, 点 Q 是其图象上的任意一点,作 QA 垂直于 y 轴,作QB 垂直于x 轴,矩形AOBQ的面积与 k 的关系是S=|k|
2. 推理:
△QAO与△QBO的面积和 k 的关系是S△QAO=S△QBO=|k|/2
(
思维方法
)
反比例函数图象中有关图形的面积
(
考点
例题讲析
)
【例题1】已知反比例函数y=的图象经过点(2,﹣5),则k的值为    .
【答案】﹣10.
【解析】根据反比例函数图象上点的坐标特征,k=2×(﹣5)=﹣10.
∵反比例函数y=的图象经过点(2,﹣5),
∴k=2×(﹣5)=﹣10.
【例题2】如图,矩形ABOC的顶点A在反比例函数y=的图象上,矩形ABOC的面积为3,则k=   .
【答案】3.
【解析】根据反比例函数系数k的几何意义可得出答案.
∵矩形ABOC的面积为3,
∴|k|=3,
又∵k>0,
∴k=3.
【例题3】(2023湖南张家界)如图,矩形的顶点A,C分别在y轴、x轴的正半轴上,点D在上,且,反比例函数的图象经过点D及矩形的对称中心M,连接.若的面积为3,则k的值为( )
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】设点的坐标为,根据矩形对称中心的性质得出延长恰好经过点B,,确定,然后结合图形及反比例函数的意义,得出,代入求解即可.
【详解】∵四边形是矩形,
∴,,
设点的坐标为,
∵矩形的对称中心M,
∴延长恰好经过点B,,
∵点D在上,且,
∴,
∴,

∵在反比例函数的图象上,
∴,
∵,
∴,
解得:,
∴,故选C.
【点睛】本题考查了矩形的性质,反比例函数图象上点的坐标特征,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.
(
考点精炼
)
1. 如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
【答案】3
【解析】【分析】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,先证四边形CDEB为矩形,得出CD=BE,再证Rt△COD≌Rt△BAE(HL),根据S平行四边形OCBA=4S△OCD=2,再求S△OBA=即可.
详解】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,
∴CD∥BE,
∵四边形ABCO为平行四边形,
∴CB∥OA,即CB∥DE,OC=AB,
∴四边形CDEB为平行四边形,
∵CD⊥OA,
∴四边形CDEB为矩形,
∴CD=BE,
∴在Rt△COD和Rt△BAE中,

Rt△COD≌Rt△BAE(HL),
∴S△OCD=S△ABE,
∵OC=AC,CD⊥OA,
∴OD=AD,
∵反比例函数的图象经过点C,
∴S△OCD=S△CAD=,
∴S平行四边形OCBA=4S△OCD=2,
∴S△OBA=,
∴S△OBE=S△OBA+S△ABE=,
∴.
故答案为3.
【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
2.如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=,则k=_____.
【答案】
【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.
【解析】过点M作MN⊥AD,垂足为N,则MN=AD=3,
在Rt△FMN中,∠MFN=30°,∴FN=MN=3,∴AN=MB=8﹣3=5,
设OA=x,则OB=x+3,∴F(x,8),M(x+3,5),∴8x=(x+3)×5,
解得,x=5,∴F(5,8),∴k=5×8=40.故答案为:40.
【点睛】考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.
3.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图象于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为   .
【答案】8
【解析】连接OA、OB,由反比例函数系数k的几何意义可得S△AOC=6,S△BOC=,又S△AOB=S△APB=2,所以S△AOC﹣S△BOC=2,代入计算即可得出k的值.
解:连接OA、OB,
∵AC⊥x轴,
∴AC∥y轴,
∴S△AOB=S△APB,
∵S△APB=2,
∴S△AOB=2,
由反比例函数系数k的几何意义可得:
S△AOC=6,S△BOC=,
∴6﹣=2,
解得:k=8,
故答案为8.
4.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=   .
【答案】8
【解析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于4,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值.
∵反比例函数与正比例函数的图象相交于A、B两点,
∴A、B两点关于原点对称,
∴OA=OB,
∴△BOC的面积=△AOC的面积=8÷2=4,
又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,
∴△AOC的面积=|k|,
∴|k|=4,
∵k>0,
∴k=8.
5. (2023湖南株洲)如图所示,在平面直角坐标系中,四边形为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点,点在函数的图像上
(1)求k的值;
(2)连接,记的面积为S,设,求T的最大值.
【答案】(1) (2)1
【解析】【分析】(1)点在函数的图像上,代入即可得到k的值;
(2)由点在x轴负半轴得到,由四边形为正方形得到,轴,得的面积为,则,根据二次函数的性质即可得到T的最大值.
【详解】(1)∵点在函数的图像上,
∴,
∴,
即k的值为2;
(2)∵点在x轴负半轴,
∴,
∵四边形为正方形,
∴,轴,
∴的面积为,
∴,
∵,
∴抛物线开口向下,
∴当时,有最大值,T的最大值是1.
【点睛】此题考查了二次函数的性质、反比例函数的图象和性质、正方形的性质等知识,数形结合和准确计算是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座一 反比例函数
专题04 求解反比例函数的k值
(
课标要求
)
1. 理解反比例函数的系数 k 的几何意义,并将其灵活运用于坐标系中图形的面积计算中.
2. 体会“数”与“形”的相互转化,学习数形结合的思想方法,进一步提高对反比例函数相关知识的综合运用能力.
(
知识点解读
)
1.反比例函数解析式中 k 的几何意义
对于反比例函数y=k/x, 点 Q 是其图象上的任意一点,作 QA 垂直于 y 轴,作QB 垂直于x 轴,矩形AOBQ的面积与 k 的关系是S=|k|
2. 推理:
△QAO与△QBO的面积和 k 的关系是S△QAO=S△QBO=|k|/2
(
思维方法
)
反比例函数图象中有关图形的面积
(
考点
例题讲析
)
【例题1】已知反比例函数y=的图象经过点(2,﹣5),则k的值为    .
【例题2】如图,矩形ABOC的顶点A在反比例函数y=的图象上,矩形ABOC的面积为3,则k=   .
【例题3】(2023湖南张家界)如图,矩形的顶点A,C分别在y轴、x轴的正半轴上,点D在上,且,反比例函数的图象经过点D及矩形的对称中心M,连接.若的面积为3,则k的值为( )
A. 2 B. 3 C. 4 D. 5
(
考点精炼
)
1. 如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
2.如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=,则k=_____.
3.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图象于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为   .
4.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=   .
5. (2023湖南株洲)如图所示,在平面直角坐标系中,四边形为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点,点在函数的图像上
(1)求k的值;
(2)连接,记的面积为S,设,求T的最大值.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)