中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座三 锐角三角函数
专题06 锐角三角函数单元综合检测试卷
试卷满分100分,考试时间90分钟
一、单选题(7个小题,每空3分,共21分)1.如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则( )
A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB
2.如图,在 正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是的外接圆,则的值是( )
A. B. C. D.
3.如图,已知一商场自动扶梯的长为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( )
A. B. C. D.
4.如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为( )
A.2 B. C. D.1
5.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为( )
A. B.﹣1 C. D.
6. (2023浙江杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形()和中间一个小正方形拼成的大正方形中,,连接.设,若正方形与正方形的面积之比为,则( )
A. 5 B. 4 C. 3 D. 2
7. 如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为( )
A. B. 3 C. D. 2
二、填空题(10个小题,每空3分,共30分)
1. 计算:______.
2. (2023湖南郴州) 在 Rt △ABC中, ∠ACB=90°,AC=6,BC=8,D是AB的中点,则 _______.
3. (2023武汉)如图,将的∠AOB按图摆放在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将的∠AOC放置在该尺上,则OC与尺上沿的交点C在尺上的读数约为____cm
(结果精确到0.1 cm,参考数据:,,)
4.如图所示,在四边形中,,,.连接,,若,则长度是_________.
5.观察下列等式
①sin30°= cos60°=
②sin45°= cos=45°=
③sin60°= cos30°=
根据上述规律,计算sin2a+sin2(90°﹣a)= .
6. 定义一种运算;,.例如:当,时,,则的值为_______.
7. 如图,直角三角形纸片中,,点是边上的中点,连接,将沿折叠,点落在点处,此时恰好有.若,那么______.
8. (2023湖北黄冈)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为,尚美楼顶部F的俯角为,己知博雅楼高度为15米,则尚美楼高度为________米.(结果保留根号)
9. 如图,岛在A岛的北偏东方向,岛在岛的北偏西方向,则的大小是_____.
10.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________时,才能确保山体不滑坡.(取)
三、解答题(本大题共5题,满分49分)
1.(8分)如图,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan, 即ctan=
根据上述角的余切定义,解下列问题:
(1)ctan30 = ;
(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.
2. (8分)如图,在△ABC中,AD⊥BC于D,如果AD=9,DC=5,E为AC的中点,求sin∠EDC的值.
3. (10分)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪和测速仪到路面之间的距离,测速仪和之间的距离,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪处测得小汽车在隧道入口点的俯角为25°,在测速仪处测得小汽车在点的俯角为60°,小汽车在隧道中从点行驶到点所用的时间为38s(图中所有点都在同一平面内).
(1)求,两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点行驶到点是否超速?通过计算说明理由.(参考数据:,,,,,)
4.(10分) (2023湖南张家界)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P点,测得奇楼顶端A的俯角为,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为,求奇楼的高度.(结果精确到1m,参考数据:,,)
5. (13分)(2023湖南郴州) 某次军事演习中,一艘船以的速度向正东航行,在出发地测得小岛在它的北偏东方向,小时后到达处,测得小岛在它的北偏西方向,求该船在航行过程中与小岛的最近距离(参考数据:,.结果精确到).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年人教版九年数学下册同步及知识拓展学讲练测讲义(全国通用)
讲座三 锐角三角函数
专题06 锐角三角函数单元综合检测试卷
试卷满分100分,考试时间90分钟
一、单选题(7个小题,每空3分,共21分)
1.如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则( )
A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB
【答案】B
【解析】根据三角函数的定义进行判断,即可解决问题.
∵中,,、、所对的边分别为a、b、c
∴,即,则A选项不成立,B选项成立
,即,则C、D选项均不成立,故选:B.
【点睛】本题考查了三角函数的定义,熟记定义是解题关键.
2.如图,在 正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是的外接圆,则的值是( )
A. B. C. D.
【答案】B
【解析】作直径BD,连接CD,根据勾股定理求出BD,根据圆周角定理得到∠BAC=∠BDC,根据余弦的定义解答即可.
【详解】如图,作直径BD,连接CD, 由勾股定理得,
在Rt△BDC中,cos∠BDC= 由圆周角定理得,∠BAC=∠BDC,
∴cos∠BAC=cos∠BDC=故选:B.
【点睛】本题考查的是三角形的外接圆与外心,掌握勾股定理的应用,圆周角定理、余弦的定义是解题的关键.
3.如图,已知一商场自动扶梯的长为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于( )
A. B. C. D.
【答案】A
【解析】由勾股定理,得角θ的邻边为8米,根据锐角三角函数的正切定义,得
tanθ==,即选A.
4.如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为( )
A.2 B. C. D.1
【答案】A
【解析】∠DBA没有在直角三角形中 ,无法使用正切定义转换成边的比.现设法将其置身在一个直角三角形中.
过点D作DE⊥AB,垂足为E.在Rt△BDE中,
tan∠DBA=.∵tan∠DBA=,∴=.设DE= k ,
则BE=5k,在Rt△ADE中,∠A=45°,∴AE=DE= k,AB=6 k.
在等腰Rt△ABC中, ∠C=90o,AC=6,∴AB=6 ,解得k= ,
即DE=.在 Rt△ADE 中, ∠A=45° ,∴AD=DE =2.
【点拨】构造直角三角形,将所考察的角置身在这个直角三角形中.
5.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为( )
A. B.﹣1 C. D.
【答案】B
【解析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.
作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,
故选:B.
【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.
6. (2023浙江杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形()和中间一个小正方形拼成的大正方形中,,连接.设,若正方形与正方形的面积之比为,则( )
A. 5 B. 4 C. 3 D. 2
【答案】C
【解析】设,,首先根据得到,然后表示出正方形的面积为,正方形的面积为,最后利用正方形与正方形的面积之比为求解即可.
【详解】设,,
∵,,
∴,即,
∴,整理得,
∴,
∵,
∴,
∴正方形的面积为,
∵正方形面积为,
∵正方形与正方形的面积之比为,
∴,
∴解得.故选:C.
【点睛】考查勾股定理,解直角三角形,赵爽“弦图”等知识,解题的关键是熟练掌握以上知识点.
7. 如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为( )
A. B. 3 C. D. 2
【答案】C
【解析】先根据锐角三角函数值求出,再由勾股定理求出过点D作于点E,依据三角函数值可得从而得,再由得AE=2,DE=1,由勾股定理得AD=,从而可求出CD.
【详解】在中,,,
∴
∴
由勾股定理得,
过点D作于点E,如图,
∵,,
∴
∴
∴
∴
∵
∴
∴
∴,
在中,
∴
∵
∴
故选:C
【点睛】考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE的长是解答本题的关键.
二、填空题(10个小题,每空3分,共30分)
1. 计算:______.
【答案】
【解析】原式第一项运用算术平方根的性质进行化简,第二项代入特殊角三角函数值,第三项运用零指数幂运算法则计算,第四项运用负整数指数幂的运算法则进行计算,最后根据实数的运算法则得出结果即可.
=
=
故答案为:
2. (2023湖南郴州) 在 Rt △ABC中, ∠ACB=90°,AC=6,BC=8,D是AB的中点,则 _______.
【答案】5
【解析】先根据题意画出图形,再运用勾股定理求得AB,然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.
如图:∵∠ACB=90°,AC=6,BC=8
∴
∵∠ACB=90°,D为AB的中点,
∴CD=AB=×10=5.
故答案为5.
【点睛】本题主要考查了运用勾股定理解直角三角形、直角三角形斜边上的中线等于斜边的一半的性质等知识点,掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.
3. (2023武汉)如图,将的∠AOB按图摆放在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将的∠AOC放置在该尺上,则OC与尺上沿的交点C在尺上的读数约为____cm
(结果精确到0.1 cm,参考数据:,,)
【答案】2.7.
【解析】解直角三角形的应用,等腰直角三角形的性质,矩形的性质,锐角三角函数定义,特殊角的三角函数值.
过点B作BD⊥OA于D,过点C作CE⊥OA于E.
在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm.
∴CE=BD=2cm.
在△COE中,∠CEO=90°,∠COE=37°,
∵,∴OE≈2.7cm.
∴OC与尺上沿的交点C在尺上的读数约为2.7cm.
4.如图所示,在四边形中,,,.连接,,若,则长度是_________.
【答案】10
【解析】根据直角三角形的边角间关系,先计算,再在直角三角形中,利用勾股定理即可求出.
在中,
∵,∴.
在中,.故答案为:10.
【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.
5.观察下列等式
①sin30°= cos60°=
②sin45°= cos=45°=
③sin60°= cos30°=
根据上述规律,计算sin2a+sin2(90°﹣a)= .
【答案】1.
【解析】此题考查了互余两角的三角函数的关系,属于规律型题目,注意根据题意总结,另外sin2a+sin2(90°﹣a)=1是个恒等式,以后记住并可以运用.根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案.
由题意得,sin230°+sin2(90°﹣30°)=1;
sin245°+sin2(90°﹣45°)=1;
sin260°+sin2(90°﹣60°)=1;
故可得sin2a+sin2(90°﹣a)=1.故答案为:1.
6. 定义一种运算;,.例如:当,时,,则的值为_______.
【答案】
【解析】根据代入进行计算即可.
=
=
=
=.
故答案为:.
【点睛】此题考查了公式的变化,以及锐角三角函数值的计算,掌握公式的转化是解题的关键.
7. 如图,直角三角形纸片中,,点是边上的中点,连接,将沿折叠,点落在点处,此时恰好有.若,那么______.
【答案】
【解析】根据D为AB中点,得到AD=CD=BD,即有∠A=∠DCA,根据翻折的性质有∠DCA=∠DCE,CE=AC,再根据CE⊥AB,求得∠A=∠BCE,即有∠BCE=∠ECD=∠DCA=30°,则有∠A=30°,在Rt△ACB中,即可求出AC,则问题得解.
∵∠ACB=90°,
∴∠A+∠B=90°,
∵D为AB中点,
∴在直角三角形中有AD=CD=BD,
∴∠A=∠DCA,
根据翻折的性质有∠DCA=∠DCE,CE=AC,
∵CE⊥AB,
∴∠B+∠BCE=90°,
∵∠A+∠B=90°,
∴∠A=∠BCE,
∴∠BCE=∠ECD=∠DCA,
∵∠BCE+∠ECD+∠DCA=∠ACB=90°,
∴∠BCE=∠ECD=∠DCA=30°
∴∠A=30°,
∴在Rt△ACB中,BC=1,
则有,
∴,
故答案为:.
【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE=∠ECD=∠DCA=30°是解答本题的关键.
8. (2023湖北黄冈)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为,尚美楼顶部F的俯角为,己知博雅楼高度为15米,则尚美楼高度为________米.(结果保留根号)
【答案】##
【解析】过点E作于点M,过点F作于点N,首先证明出四边形是矩形,得到,然后根据等腰直角三角形的性质得到,进而得到,然后利用角直角三角形的性质和勾股定理求出,即可求解.
【详解】如图所示,过点E作于点M,过点F作于点N,
由题意可得,四边形是矩形,
∴,
∵,
∴,
∵博雅楼顶部E的俯角为,
∴,
∴,
∴,
∵点A是的中点,
∴,
由题意可得四边形是矩形,
∴,
∵尚美楼顶部F俯角为,
∴,
∴,
∴,
∴在中,,
∴,
∴解得,
∴.
故答案为:.
【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
9. 如图,岛在A岛的北偏东方向,岛在岛的北偏西方向,则的大小是_____.
【答案】或者85度
【解析】过作交于,根据方位角的定义,结合平行线性质即可求解.
岛在A岛的北偏东方向,
,
岛在岛的北偏西方向,
,
过作交于,如图所示:
,
,
,
故答案为:.
【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.
10.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________时,才能确保山体不滑坡.(取)
【答案】10
【解析】如图,设点B沿BC向右移动至点H,使得∠HAD=50°,过点H作HF⊥AD于点F,
∵AB=26,斜坡的坡比为12∶5,则设BE=12a,AE=5a,
∴,解得:a=2,∴BE=24,AE=10,∴HF=BE=24,
∵∠HAF=50°,则,解得:AF=20,∴BH=EF=20-10=10,
故坡顶B沿至少向右移10时,才能确保山体不滑坡.
【点睛】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.
三、解答题(本大题共5题,满分49分)
1.(8分)如图,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan, 即ctan=
根据上述角的余切定义,解下列问题:
(1)ctan30 = ;
(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.
【答案】(1)(2)
【解析】可先设最小边长为一个特殊数(这样做是为了计算方便),然后在计算出其它边长,根据余切定义进而求出ctan30 ;tanA=,为了计算方便,可以设BC=3 ,AC=4根据余切定义就可以求出ctanA的值.
(1)设BC=1, ∵α=30
∴AB=2
∴由勾股定理得:AC=
ctan30 ==
(2) ∵tanA=
∴设BC=3 AC=4
∴ctanA==
2. (8分)如图,在△ABC中,AD⊥BC于D,如果AD=9,DC=5,E为AC的中点,求sin∠EDC的值.
【答案】见解析
【解析】首先利用勾股定理计算出AC的长,再根据直角三角形的性质可得DE=EC,根据等腰三角形性质可得∠EDC=∠C,进而得到sin∠EDC=sin∠C=.
∵AD⊥BC,∴∠ADC=90°,
∵AD=9,DC=5,∴AC==.
∵E为AC的中点,∴DE=AE=EC=AC,
∴∠EDC=∠C,
∴sin∠EDC=sin∠C===.
方法总结:求三角函数值的关键是找准直角三角形或利用等量代换将角或线段转化进行解答.
3. (10分)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪和测速仪到路面之间的距离,测速仪和之间的距离,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪处测得小汽车在隧道入口点的俯角为25°,在测速仪处测得小汽车在点的俯角为60°,小汽车在隧道中从点行驶到点所用的时间为38s(图中所有点都在同一平面内).
(1)求,两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点行驶到点是否超速?通过计算说明理由.(参考数据:,,,,,)
【答案】(1)760米 (2)未超速,理由见解析
【解析】【分析】(1)分别解,求得,根据即可求解;
(2)根据路程除以速度,进而比较即可求解.
【详解】(1)
四边形是平行四边形
四边形是矩形,
在中,
在中,
答:,两点之间的距离为760米;
(2),
小汽车从点行驶到点未超速.
【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.
4.(10分) (2023湖南张家界)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P点,测得奇楼顶端A的俯角为,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为,求奇楼的高度.(结果精确到1m,参考数据:,,)
【答案】
【解析】【分析】延长,交的延长线于点C,根据题意得出,,再由等腰直角三角形得出,然后解直角三角形即可.
【详解】解:延长,交的延长线于点C,
则
由题意得,,,
在中,,
则
∴,
在中,,
解得,
∴奇楼的高度约为.
【点睛】题目主要考查解三角形的应用,理解题意,作出辅助线是解题关键.
5. (13分)(2023湖南郴州) 某次军事演习中,一艘船以的速度向正东航行,在出发地测得小岛在它的北偏东方向,小时后到达处,测得小岛在它的北偏西方向,求该船在航行过程中与小岛的最近距离(参考数据:,.结果精确到).
【答案】该船在航行过程中与小岛的最近距离.
【解析】【分析】过点作,垂足为,先在中,利用三角函数求出与的关系,然后在中,利用锐角三角函数的定义求出与的关系,从而利用线段的和差关系进行计算,即可解答;
【详解】过点作,垂足为,
解∶∵,,,,,
∴,,,
在中,,即,
∴,
在中,,即,
∴,
∴,
∴(),
∴该船在航行过程中与小岛的最近距离.
【点睛】主要考查了与方位角有关的解直角三角形,作出相应辅助线构造直角三角形是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)