首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
期中专区
高三上学期
江苏省扬州市2023-2024学年高三上学期11月期中检测数学试题(扫描版含答案)
文档属性
名称
江苏省扬州市2023-2024学年高三上学期11月期中检测数学试题(扫描版含答案)
格式
zip
文件大小
1.9MB
资源类型
教案
版本资源
苏教版(2019)
科目
数学
更新时间
2023-11-16 17:37:08
点击下载
文档简介
2023一2024学年度第一学期期中检测试题
高三数学
2023.11
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一
项符合要求)
1.已知集合A={x0≤1ogx≤1,B={xx-3到≤1,则A∩B=(
A.[1,2]
B.[1,4]
C.[2,3]
D.[2,4]
2.“a=0”是“sinx=0”的().
A.充分不必要条件B.必要不充分条件C.充要条件
D.既不充分也不必要条件
3.古希腊数学家泰特托斯(Theaetetus,ˉ公元前417-公元前369年)详细地
讨论了无理数的理论,他通过右图来构造无理数√2,√,√5,…,
则sin∠BAD=(
A.
2W6+35
B.
26-3V5
5
6
6
c.2w3+v6
D.
2w3-V6
6
6
4.若关于x的不等式x2+x+g<0的解集为(~L2),则不等式+m-12>0的解集为(
x+q
A.(-4,2)U(3,+o)B.(-3,2)U(4,+o)
C.(-0,-3)U(2,4)D.(-0,-4)U(2,3)
5.已知tana=2,则-
sin(-a)+cos(a-π)
A.-1
B.-1
C.1
3
D.3
6.已知a=g48-目.c-g,则abe的大小关系数
A.a
B.b
C.c
D.c
7.已知函数f(x)=sin2x-4x,g(x)=e+e,则下图所对应的函数可能是(
A.f(x)+g(x)
B.f(x)-g(x)
C.f(x)g(x)
D.
f(x)
8(x)
第1页(共4页)
有两个点在y轴上移动,:时刻的位霞分别由函数八-气-写》和 方c确定,在
(0,2x)时段内两点重合的时刻t有(
A.1个
B.2个
C.3个
D.4个
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合
题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)
9、下列函数中,最小值是4的有(
)
A.y=2*+4
B.y=x+4
4
Inx
C.y=sinx+
inx
D.y=+
10.下列选项中,能说明“x∈(-o,2),都有x2<4”为假命题的x取值有(
A.-4
B.-2
C.0
D.3
11.在△4BC中,角A、B、C所对的边分别为a、b、c,则能推出A=元的有(
3
A.asin C-3ccosA=0
B.3bsin 4-acosC=(c-b)cos A
C.tan(+(1-tan dtan B)=3c
D.3bsin A-acosC=(c+b)cos4
acos B
12.已知函数f(x)及其导函数f"(x)的定义域均为R,且满足f(x)=-f(6-x),
f'(x)=2-f'(4-x),f(3)=-1,记g(x)=2f(3-x)-1,则下列说法中正确的有(
A.函数f'(x)的图象关于(5,1)对称
B.函数y=f'(2x+4)-1为奇函数
C.函数g(x)的图象关于x=1对称
D.数列{g'(n)}的前2023项之和为4050
三、填空题(本大题共4小题,每小题5分,共20分)
13.已知函数f(x)=x“的图象过点(2,8),则')=▲一
14.将函数y=si血x图象上每一个点的横坐标变为原来的二倍(纵坐标不变),然后再向右平移
个单位长度,得到函数y=f(x)的图象,则函数f(x)的解析式为▲
15.己知正数a,b满足a+36=4,则1+,3的最小值为▲一、
a+1b+1
16.若函数f(x)=x+bx2+cx+d(b,c,d∈R)恰有两个零点x,x2,且:-x=1,则函数f(x)所
有可能的极大值为▲一
第2页(共4页)高三数学参考答案 2023.11
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C A C B A B D C AD AB ACD BD
题号 13 14 15 16
4
答案 3 f (x) sin(2x ) 2 0,
3 27
T
17.【答案】(1) 因为 f (x1) 0, f (x ) 0 ,且 x1 x2 的最小值为 ,所以 , 2
2 2 2
2
则T ,所以 2,············································································ 2 分
T
又 f (0) 2 3 ,所以 4sin 2 3 ,
又 | | ,所以 ,
2 3
所以 f (x) 4sin(2x ) . ················································································· 3 分
3
5
令 2k 2x 2k ,解得 k x k ,k Z ,
2 3 2 12 12
5
所以函数 f (x) 的单调递增区间为 k , k ,k Z. ··································· 5 分
12 12
12 3
(2) 由题可知 f ( ) 4sin(2 ) ,则 sin(2 ) ,
3 5 3 5
4
因为 ( , ),所以 2 ( , ) ,
12 2 3 2 3
3 4
所以 cos(2 ) 1 ( )2 , ································································· 7 分
3 5 5
所以 sin 2 sin[(2 ) ] sin(2 )cos cos(2 )sin
3 3 3 3 3 3
3 1 4 3 3 4 3
( ) . ·····························································10 分
5 2 5 2 10
18.【答案】(1) 证明:连接 AB1, A1B 交于点 E ,连接 AC1, A1C 交于点 F ,连接 EF ,
则平面 AB1C1和平面 A1BC 交线为 EF ,
因为 ABC A1B1C1 为直三棱柱,所以 ABB1A1, ACC1A1为平行四边形,
所以 E 为 AB1中点, F 为 AC1中点,所以 EF B1C1 , ·········································· 4 分
又 EF 平面 A1B1C1, B1C1 平面 A1B1C1,
所以 EF 平面 A1B l1C1,即 平面 A1B1C1. ························································ 6 分
(2) 直三棱柱 ABC A1B1C1 中, BA BC ,所以 BA,BC,BB1两两垂直.
以 BA, BC, BB1 为单位正交基底,建立如图所示的空间直角坐标系 B xyz ,
则C(0,1,0),C1(0,1,1) , A1(1,0,1) . ···································································· 7 分
第 1 页(共 6 页)
{#{QQABQYYQgggoQBIAAAhCQwUiCgGQkAACCIoOxBAEoAABgANABAA=}#}
z
B1
A C11
E
F
B
A
x C y
设Q(0,0,t) ,则QC1 (0,1,1 t),CA1 (1, 1,1),
QC1 CA1 t 3
所以 cos QC ,CA ·····································10 分 1 1
QC1 CA1 1 (1 t)
2 3 3
1 1
解得 t ,所以线段 BQ长为 . ··································································12 分
2 2
1 a
19.【答案】(1) 方法一:因为 f (x)是奇函数,所以 f (0)=0,即 0,解得 a 1, ···· 2 分
2 2
x 2 x 1 ( 2 x 1)2x 2 1 1 2
x
此时, f (x) , f ( x) f (x),
2x 1 2 2 x 1 2 (2 x 1 2)2x 2 2x 1
则 f (x) 是奇函数.
故 a 1. ····································································································· 4 分
方法二:因为 f (x)是奇函数,
2x a 2 x a 2x a 1 a 2x
所以 f (x) f ( x) 0,
2x 1 2 2 x 1 2 2x 1 2 2 2x 1
即 (a 1)(2x 1) 0对 x R 恒成立,
所以 a 1 . ···································································································· 4 分
-2x+1 1 1
(2) 由(1)知 f (x)= x+1 =- + x ,则 f (x)在 R 上为减函数, ·························· 6 分 2 +2 2 2 +1
又 f (x)是奇函数,
由 f ( 3sin cos ) f (k cos2 ) 0 得: f ( 3sin cos ) f (k cos2 ) f ( k cos2 ) ,
所以 3sin cos k cos2 ,
即 3sin cos cos2 k 在 ,0 上有解, ············································· 9 分
4
3 1 cos2
2 1记 g( ) 3sin cos cos ,则 g( ) sin 2 sin 2
2 2 6 2
2
因为 ,0 ,则 2 , ,
4 6
3 6
1 3
所以 sin 2 1, ,所以 g( ) , 1 ,
6 2 2
3 3
所以 k ,即 k . ··············································································12 分
2 2
第 2 页(共 6 页)
{#{QQABQYYQgggoQBIAAAhCQwUiCgGQkAACCIoOxBAEoAABgANABAA=}#}
20.【答案】(1) 提出假设 H :该品牌方便面中0 C 卡片所占比例与方便面口味无关.
2 n(ad bc)
2 150 (20 45 10 75)2 75
0.18 6.635, ··········· 3 分
(a b)(c d)(a c)(b d) 95 55 30 120 418
又 P( 2 ≥0.010) 6.635,
所以没有 99%的把握认为“该品牌方便面中C 卡片所占比例与方便面口味有关”. ······ 4 分
(2) ①记“小明一次购买 3 袋该方便面,中奖”为事件 A,
2 2 1 24
P(A) A3 . ·············································································· 8 分 3
5 5 5 125
② 记“小明一次购买 3 袋该方便面,未获得C 卡”为事件 B .
4 64
P(BA) ( )3 , ····················································································10 分
5 125
64
P(BA)
P(B | A) 125
64
.
P(A) 24 101
1
125
64 64
答:①小明中奖的概率为 ;②小明为中奖,未获得C 卡的概率为 . ·············12 分
125 101
21.【答案】(1) 由题可知 AB c , AC 3c , BC 2c ,
BA2 BC2 AC2 c2 (2c)2 ( 3c)2 1
在△ABC 中,由余弦定理得 cos ABC ,
2 BA BC 2 c 2c 2
又 ABC (0, ) ,所以 ABC , ································································· 2 分
3
1
又 D 为 BC 的中点,所以 BD BC c ,则 BD BA,
2
所以△ABD为等边三角形,又 AD 1,
所以 AB 1, BC 2,
1 1 3 3
所以 S△ABC BA BC sin ABC 1 2 . ·········································· 4 分
2 2 2 2
a
(2) 方法一:由题可知 AB c , AC 3c , AD 1, BD DC ,
2
设 ABC 2 , DAC , ADB ,则 ADC ,
AB AD c 1
在△ABD中,由正弦定理得 ,即 ,
sin ADB sin ABD sin sin 2
a
DC AC 3c
在△ADC 中,由正弦定理得 ,即 2 ,
sin DAC sin ADC sin sin( )
1 a 3
所以 ,则 a ,① ···························································· 6 分
sin 2 2 3 sin cos
在△ABD和△ADC 中,由余弦定理得
a a
12 ( )2 c2 12 ( )2 ( 3c)2
cos ADB cos ADC 2 2 0 ,
a a
2 1 2 1
2 2
所以 a2 4 8c2 ,② ······················································································ 8 分
在△ADC 中,由余弦定理得DC2 AD2 AC2 2AD AC cos DAC ,
第 3 页(共 6 页)
{#{QQABQYYQgggoQBIAAAhCQwUiCgGQkAACCIoOxBAEoAABgANABAA=}#}
1
1 3c2 a2
a
即 ( )2 12 ( 3c)2 2 1 3c cos ,即 cos 4 ,③ ························10 分
2 2 3c
2
将 a2 8c2
c 2
4代入得 cos ,④
2 3c
3 c2 2 3 (c2 2)2
由①④得 ( )2 ( )2 ,即 ,即9c2 (2c2 1)(c4 4c2 4),
a 8c22 3c 4 12c
2
即 2 2 22c6 7c4 5c2 4 0,即 (c 1)(2c 1)(c 4) 0 ,
因为 c 0,所以 c2 1,则 a2 8c2 4 4 ,所以 a 2 .
故 BC 的长为 2. ····························································································12 分
A
θ
π- α
2θ α
B D C
方法二:作 ABC 的角平分线,交 AC 与M .
设 ABC 2 , DAC ,则 ABM CBM ,
AB AM
,
sin AMB sin
在△ABM 和△CBM 中,由正弦定理可得
BC CM ,
sin BMC sin
又 AMB BMC ,所以 sin AMB sin( BMC) sin BMC,
AB AM
所以 .
BC CM
A
θ M
2θ
B D C
AM c 3ac
由题可知 AB c , AC 3c , BC a,所以 ,CM . ······················ 7 分
CM a c a
在△ACD 和△BCM 中, CAD CBM , ACD BCM ,
AC BC
所以△ACD∽△BCM ,所以 ,
CD CM
3c a
则 ,即 a2 ac 6c2 0,即 (a 3c)(a 2c) 0 ,
a 3ac
2 c a
所以 a 3c (舍)或 a 2c . ·············································································· 9 分
在△ABD和△ADC 中,由余弦定理得
a a
12 ( )2 c2 12 ( )2 ( 3c)2
cos ADB cos ADC 2 2 0 ,
a a
2 1 2 1
2 2
所以 a2 4 8c2 , ························································································ 11 分
第 4 页(共 6 页)
{#{QQABQYYQgggoQBIAAAhCQwUiCgGQkAACCIoOxBAEoAABgANABAA=}#}
则 a2 4 2a2 ,解得 a 2 .
故 BC 的长为 2. ····························································································12 分
方法三:延长CB到 E ,使 EB BA,连接 EA .
a
由题可知 AB c , AC 3c , BC a, BD DC ,
2
设 ABC 2 , DAC ,则 BEA BAE ,
在△ACD 和△ECA中, AEC DAC , ACD ECA,
AC EC
所以△ACD∽△ECA ,所以 ,则 AC2 CD EC , ·································· 7 分
CD AC
a
所以 ( 3c)2 (a c),
2
即 a2 ac 6c2 0,即 (a 3c)(a 2c) 0 ,
所以 a 3c (舍)或 a 2c . ·············································································· 9 分
在△ABD和△ADC 中,由余弦定理得
12
a
( )2
a
c2 12 ( )2 ( 3c)2
cos ADB cos ADC 2 2 0 ,
a a
2 1 2 1
2 2
所以 a2 4 8c2 , ························································································ 11 分
则 a2 4 2a2 ,解得 a 2 .
故 BC 的长为 2. ····························································································12 分
A
θ θ
θ 2θ
E B D C
2 2
22.【答案】(1) 因为 f (x) x ax a lnx(x 0) ,
a2 2x2 ax a2 x a 2x a
则 f x 2x a , ········································· 1 分
x x x
a
令 f (x) 0,则 x 或 x a .
2
1°若 a 0,当 x 0,a , f x 0 , f x 单调递减;当 x a, , f x 0 , f x 单调递增.
所以 f (x) f a a2 ln a 0,解得 a 1; ···················································· 3 分 min
a
2°若 a 0,当 x 0, , f x 0 , f x 单调递减;
2
a
当 x , , f x 0, f x 单调递增.
2
2 2 3
a a a
所以 f (x) 2
a 3 a
,即 ,解得 a 2e4 .
min f a ln 0 ln
2 4 2 2 4 2
3
综上, a的值为 1 或 2e4 . ·············································································· 5 分
第 5 页(共 6 页)
{#{QQABQYYQgggoQBIAAAhCQwUiCgGQkAACCIoOxBAEoAABgANABAA=}#}
(2) 若 2a 0时, f x x x a alnx ,
当 0 x min a2 ,1 时, x a2 0 , alnx 0 ,则 f x 0不满足条件. ··················· 6 分
若 2a 0时,由 f 1 1 a 0可得0 a 1 . ······················································· 8 分
下面证明其充分性,即证当 0 a 1时, f x x2 a2x alnx 0 恒成立.
思路一:关于 a的函数 h a xa2 alnx x2 ,0 a 1是一段开口向下的抛物线.
h 0 x2 0, ①
只要证
h 1 x lnx x
2 0. ②
其中①式显然成立.
1 2x2 x 1 (2x 1)(x 1)
令 (x) x2 x lnx,则 (x) 2x 1 ,
x x x
所以当 x (0,1) 时, (x) 0, (x)单调递减;当 x (1, )时, (x) 0, (x) 单调递增.
所以 (x) (1) 0,②式得证.
所以,当 0 a 1时, f x x2 a2x alnx 0 恒成立.
综上, a的取值范围是[0,1] . ···········································································12 分
1 x 1
思路二:令 h x x 1 ln x ,则 h x 1 0 .
x x
当 x (0,1) 时, h (x) 0 , h(x)单调递减;当 x (1, )时, h (x) 0, h(x) 单调递增.
所以 h(x) h(1) 0,则 x 1 ln x .
由 2 2 2 2 2ln x x 1,得 a [0,1]时, x a x alnx x a x a x 1 x a2 a x a ,
又当 2 2 2 2a [0,1]时,方程 x (a a)x a 0的 (a a) 4a a[a(a 1)2 4] 0 ,
所以 x2 a2x alnx 0对 x (0, )恒成立.
所以, a [0,1]均满足.
综上, a的取值范围是[0,1] . ···········································································12 分
第 6 页(共 6 页)
{#{QQABQYYQgggoQBIAAAhCQwUiCgGQkAACCIoOxBAEoAABgANABAA=}#}
点击下载
同课章节目录
点击下载
VIP下载