首页
小学语文
小学数学
小学英语
小学科学
小学道德与法治(政治)
小学音乐
小学美术
小学体育
小学信息技术
资源详情
小学数学
人教版(2024)
六年级上册
6 百分数(一)
人教版小学数学六年级上册第六单元 百分数(一) 提升练
文档属性
名称
人教版小学数学六年级上册第六单元 百分数(一) 提升练
格式
zip
文件大小
995.5KB
资源类型
试卷
版本资源
科目
数学
更新时间
2023-11-13 13:28:03
点击下载
文档简介
人教版小学数学六年级上册第六单元 百分数(一) 提升练
一、单选题
1.(2023·汝州)一种商品,降价20元后,卖180元,比原价降低了( )
A.90% B.12.5% C.约11.1% D.10%
2.(2023六下·胶州期中)甲数比乙数多25%,甲、乙两数的最简比是( )
A.4:5 B.5:4 C.1:4 D.4:1
3.汽车从A地到B地,原计划用10时到达,实际用了8时,速度提高了( )。
A.20% B.25% C.40% D.80%
4.在连续三个交易日中,某只股票第一天的收市价格是a 元,第二天涨了8%,第三天跌了8%,那么第三个交易日的收市价格( )。
A.低于a 元 B.等于a 元 C.高于a 元 D.无法确定
5.(2023·尉氏)张老师买了36本科技书和25本故事书,准备奖励这学期的阅读小明星。淘淘根据这些信息提出了一个数学问题并列出了算式“(36﹣25)÷25”,你认为淘淘提出的问题是( )
A.科技书是故事书的百分之几 B.故事书比科技书少百分之几
C.科技书比故事书多百分之几 D.故事书占两种书的百分之几
6.田田和福福在美术课上做手工剪纸。田田用一张边长是10厘米的正方形纸剪了一个最大的扇形,福福用一张边长是4厘米的正方形纸剪了一个最大的圆。对手工纸的利用率相比( )。
A.田田高 B.福福高 C.两人相同 D.无法判断
7.(2023·芜湖)下面4杯糖水中,最甜的是( )
A.含糖率为10%
B.糖与水的质量比是1:10
C.10克水中放了2克糖
D.100克含糖率10%的糖水中再加入10克糖
8.(2023·大东)金首饰的含金量用“12K”“18K”“24K“等来表示。“12K”表示含金量是50%,“24K”表示含金量是100%,那么“18K”表示的含金量是( )
A.65% B.80% C.75% D.90%
二、填空题
9.(2023·宜春)某小学植树节组织学生种了200棵树,结果有8棵没有成活,这批树的成活率是 %。若计划明年植树比今年的200棵多20%,则明年将植树 棵。
10.(2023·中山) =3÷4= :20= %= (填小数)
11. 王老师爱好买股票,去年买了一只股票后,形势不好跌了36%,这只股票今年至少要涨 %,王老师才能保本。
12.(2023·五指山)100名学生参加毕业考试,有5名学生不合格,这次考试的合格率是 。如果只有95人参加考试,全部合格,合格率是 。
13.(2023六下·阿荣旗月考)5千克是4千克的 %,4千克比5千克少 %。50吨增加吨是 吨,50吨增加是 吨。
14.(2023·房山)在 、0. 、83%和0.8 中,最大的数是 ,最小的数是 。
15.(2023·乾县)今年植树节,光明小学种植了180棵树苗,其中10棵未成活,后来又补种了20棵,全部成活。今年光明小学种植树苗的成活率是 。
16.(2023·硚口模拟)已知a×120%=b÷=c÷1=d×(a、b、c、d四个数均不为0),则这四个数中最大的是 ,最小的是 。
17.(2023六下·安宁期末)儿童的负重最好不要超过自身体重的15%,如果长期背负过重物体,会妨碍骨骼生长。小明的体重是50千克,小明的书包最好不要超过 千克。
18.(2023六下·兴宁期末)150kg油菜籽可榨油63kg,油菜籽的出油率是 。照这样计算,5t油菜籽可榨油 kg;要榨油1050kg,需要 kg 油菜籽。
19.(2023·郧阳模拟)11月份的汽油价格比10月份上涨了10%,12月份又比11月份回落了15%,12月的汽油价格与10月相比是 (填“涨”或“跌”)了,涨跌幅度是 %。
20.(2023五下·碑林期末)把一个棱长2厘米的大正方体切成棱长是1厘米的小正方体,可以切成 块,每个小正方体的体积占大正方体体积的 %。
三、计算题
21.(2023六下·奎文月考)列式计算
(1)
(2)
四、作图题
22.(2023六下·岳池期末)请用阴影表示下列各百分数。
五、解决问题
23.(2023六上·富县期末)某市场2月份的蔬菜价格比1月份上涨了15%,春天供应量增加,3月份的价格比2月份下降了10%,3月份的价格和1月份相比是涨了还是降了?涨(或降)了多少?
24.
(1)11月份的用电量比10月份多百分之几
(2)如果12月份比11月份节约用电8%,每千瓦时电费0.57元,12月份的电费是多少元
25.(2023·炎陵)“双减”后,实验小学的课后服务课程更加丰富多彩了。在学校的艺术社团中,女生有80人,比男生多25%。艺术社团的男生有多少人?
26.(2023六下·罗湖期末)右下图是A、B两组学生参加科学测试的结果,每组的测试结果都刚好分布在五个分数段中。当学生的测试分数为50分及以上时。表示通过了这次测试。
(1)A组学生本次测试的通过率是多少? (百分号前保留一位小数)
(2)B组学生科学测试成绩在60-69分的占全组的,请在图上画出表示该分数段人数的条那统计图。
27.(2023六下·天门月考)小军参加全市小学生田径运动会长跑比赛,这时:
①他跑了全程的60%;
②超过中点10%;
③距离终点还有320米。
根据以上信息,他参加的是多少米的长跑比赛?
28.(2023·炎陵)某超市在“6 18”大促期间出售两件不同的商品,标价都是300元,其中一件盈利20%,一件亏本20%。超市卖出这两件商品后,是赚了还是亏了?请用数据说明。
答案解析部分
1.【答案】D
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:20÷(20+180)
=20÷200
=10%
故答案为:D。
【分析】用售价加上20元求出原价,用降低的钱数除以原价即可求出比原价降低了百分之几。
2.【答案】B
【知识点】百分数的应用--增加或减少百分之几;比的化简与求值
【解析】【解答】解:1×(1+25%)=125%,125%:1=5:4,所以甲、乙两数的最简比是5:4。
故答案为:B。
【分析】把乙数看成单位“1”,那么甲数=乙数×(1+甲数比乙数多百分之几),然后把两数作比即可。
3.【答案】B
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:(10-8)÷8=25%,所以速度提高了25%。
故答案为:B。
【分析】路程一定,速度和时间成反比;
4.【答案】A
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:a×(1+8%)×(1-8%)=0.9936a
故答案为:A。
【分析】第三个交易日的收市价格=第一日的收市价格×(1+第二天涨了8%)×(1-第三天跌了8%),据此代入数值作答即可。
5.【答案】C
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:算式“(36﹣25)÷25”求出的是科技书比故事书多百分之几。
故答案为:C。
【分析】用两种书的本数差除以36求出的是故事书比科技书少百分之几;用两种书的本数差除以25求出的是科技书比故事书多百分之几。
6.【答案】C
【知识点】圆的面积;百分数的应用--求百分率
【解析】【解答】解:田田纸上扇形的面积:102×π×=25π(平方厘米),利用率:25π÷(10×10)=π;福福纸上圆的面积:(4÷2)2×π=4π,利用率:4π÷(4×4)=π。综上,两人对手工纸的利用率相同。
故答案为:C。
【分析】田田纸上扇形的面积=正方形纸的边长2×π×,所以田田纸的利用率: 田田纸上扇形的面积÷田田纸的面积;
福福纸上圆形的面积=(正方形纸的边长÷2)2×π,所以福福纸的利用率: 福福纸上圆形的面积÷福福纸的面积。
最后比较两人纸的利用率即可。
7.【答案】D
【知识点】百分数的应用--求百分率
【解析】【解答】解:A项:含糖率为10%;
B项:1÷(1+10)
=1÷11
≈9.1%;
C项:2÷(10+2)
=2÷12
≈16.7%;
D项:(100×10%+10)÷(100+10)
=20÷110
≈18.2%;
18.2%>16.7%>10%>9.1%。
故答案为:D。
【分析】含糖率=糖的质量÷(糖的质量+水的质量),然后比较大小,含糖率越高就越甜。
8.【答案】C
【知识点】百分数的应用--求百分率
【解析】【解答】解:18÷24=75%
故答案为:C。
【分析】用18除以24,用百分数表示得数,这样就能求出“18K”金的含金量。
9.【答案】96;240
【知识点】百分数的应用--增加或减少百分之几;百分数的应用--求百分率
【解析】【解答】解:(200-8)200100 %
=192200100 %
=0.96100 %
=96 %
200(1+20 % )
=2001.2
=240(棵)
故答案为:96 ;240。
【分析】根据成活率=成活棵数植树总棵树100 %,即可算出结果;把今年植树的棵树看作单位“1”,则明年植树的棵数是今年的(1+20 % ),据此列式计算。
10.【答案】9;15;75;0.75
【知识点】分数与小数的互化;百分数与分数的互化;比与分数、除法的关系
【解析】【解答】解:3÷4=,12×=9,20×=15,所以=3÷4=15:20=75%=0.75。
故答案为:9;15;75;0.75。
【分析】分数的分子=分母×分数值;比的前项=比的后项×比值;
分数化百分数,先把分数写成分母是100的分数,然后写成百分数的形式;
百分数化小数,先把百分号去掉,再把小数点向左移动两位。
11.【答案】56.25
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:1×(1-36%)=64%,(1-64%)÷64%=56.25%,所以这只股票今年至少要涨56.25%,王老师才能保本。
故答案为:56.25。
【分析】把这只股票看成单位“1”,那么去年跌了后的股票=这只股票×(1-去年跌了百分之几),所以这只股票今年至少要涨百分之几=(这只股票-去年跌了后的股票)÷去年跌了后的股票。
12.【答案】95%;100%
【知识点】百分数的应用--求百分率
【解析】【解答】解:(100-5)÷100=95÷100=95%;
95÷95=100%。
故答案为:95%;100%。
【分析】考试的合格人数÷参加考试的人数=考试的合格率。
13.【答案】125;20;50.2;60
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:5÷4=125%;
(5-4)÷5
=1÷5
=20%;
50+=50.2(吨)
50×(1+)
=50×
=60(吨)。
故答案为:125;20;50.2;60。
【分析】求一个数是另一个数的百分之几,用除法计算;求一个数比另一个数多(或少)几分之几,用两数之差除以单位“1”;求比单位“1”多或少几分之几的数是多少,用乘加或乘减计算。
14.【答案】;83%
【知识点】分数与小数的互化;百分数与小数的互化
【解析】【解答】解:=6÷7≈0.86;
83%=0.83;
>>>83%。
故答案为:;83%。
【分析】分数化成小数,用分数的分子除以分母;小数比较大小,先比较整数部分,整数部分大的数就大,如果整数部分相同,再比较小数部分十分位上的数,十分位上的数大的就大,如果十分位上的数相同就比较百分位上的数······直到比出大小为止。
15.【答案】95%
【知识点】百分数的应用--求百分率
【解析】【解答】解:180-10+20=190(棵)
180+20=200(棵)
190÷200×100%
=0.95×100%
=95%
故答案为:95%。
【分析】成活率是指成活的棵树占总棵树的百分比,计算方法是:成活率=成活棵数÷总棵数×100%;先求出成活的棵数和总棵数再求解。
16.【答案】c;b
【知识点】百分数与分数的互化
【解析】【解答】解:b÷=b×,=c÷1=c×,因为<<120%<,所以最大的是c,最小的是b。
故答案为:c;b。
【分析】可以把除法转化成乘法,然后根据四个已知因数的大小判断四个字母表示数的大小。也可以把它们的积都看作1,分别计算出四个字母表示的数再比较大小。
17.【答案】7.5
【知识点】百分数的应用--运用乘法求部分量
【解析】【解答】解:50×15%=7.5(千克),所以,小明的书包最好不要超过7.5千克。
故答案为:7.5。
【分析】小明书包最重的质量=小明的体重×儿童负重最多是自身的百分之几,据此代入数值作答即可。
18.【答案】42;2100;2500
【知识点】百分数的应用--求百分率
【解析】【解答】解:63÷150×100%
=0.42×100%
=42%
5吨=5000千克
5000×42%=2100(千克)
1050÷42%=2500(千克)
故答案为:42;2100;2500。
【分析】出油率=油的重量÷油菜籽的重量×100%,由此求出出油率,再根据其中的两个量求出第三个量。
19.【答案】跌了;6.5%
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:10月份的汽油价格看做单位1,
11月份的汽油价格1+10%=1.1,
12月份的汽油价格1.1×(1-15%)=1.1×0.85=0.935,
12月的汽油价格与10月相比是跌了,
跌幅度是(1-0.935)÷1=0.065÷1=6.5%。
故答案为:跌了;6.5%。
【分析】求比一个数多百分之几的数是多少用乘法,列式为:这个数×(1+多的百分之几)=所求的数;求比一个数少百分之几的数是多少用乘法,列式为:这个数×(1-少的百分之几)=所求的数;求一个数比另一个数少百分之几,就用这两个数的差除以比后面的数。
20.【答案】8;12.5
【知识点】正方体的体积;百分数的应用--求百分率
【解析】【解答】解:(2×2×2)÷(1×1×1)=8(块)
1÷8=12.5%
故答案为:8;12.5。
【分析】大正方体的体积÷小正方体的体积=可以切的块数;小正方体的体积÷大正方体的体积=每个小正方体的体积占大正方体体积的百分数。
21.【答案】(1)解:150×(1+40%)
=150×140%
=210(棵)
(2)解:150÷(1-40%)
=150÷60%
250(棵)
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】(1)梨树的棵数=桃树的棵数×(1+多的百分率);
(2)樱桃的棵数=杏子的棵数÷(1-少的百分率)。
22.【答案】解:
【知识点】百分数的意义与读写
【解析】【分析】27%表示正方形被平均分成100份,涂色部分占27份;
60%表示圆被平均分成10份,涂色部分占6份;
25%表示长方形被平均分成8份,涂色部分占2份。
23.【答案】解:1月份的蔬菜价格看做1;
2月份的蔬菜价格:1×(1+15%)=1.15;
3月份的蔬菜价格:1.15×(1-10%)=1.035;
1.035>1,涨了,
1.035-1=3.5%
答:3月份的价格和1月份相比是涨了,涨了3.5%。
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】求比一个数多百分之几的数是多少用乘法,列式为:这个数×(1+多的百分之几)=所求的数;
求比一个数少百分之几的数是多少用乘法,列式为:这个数×(1-少的百分之几)=所求的数。
24.【答案】(1)解:(100-80)÷80×100%
=20÷80×100%
=0.25×100%
=25%
答:11月份的用电量比10月份多25%。
(2)解:100×(1-8%)×0.57
=100×0.92×0.57
=92×0.57
=52.44(元)
答:12月份的电费是52.44元。
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】(1)把10月份的用电量看作单位“1”,11月份的用电量比10月份多百分之几=(11月份的用电量-10月份的用电量)÷10月份的用电量;
(2)把11月份的用电量看作单位“1”,12月份的用电量=11月份的用电量×(1-12月份比11月份节约用电百分之几),12月份的电费=每千瓦时的电费×12月份的用电量。
25.【答案】解:80÷(1+25%)
=80÷1.25
=64(人)
答:艺术社团的男生有64人。
【知识点】百分数的应用--运用除法求总量
【解析】【分析】此题主要考查了百分数的应用,把男生的人数看作单位“1”,女生的人数÷(1+25%)=男生的人数,据此列式解答。
26.【答案】(1)解:(3+4+2+2)÷(1+3+4+2+2)
=11÷12
≈91.7%
答:A组学生本次测试的通过率是91.7%。
(2)解:(2+1+3+1)÷(1-)
=7÷
=12(人)
12×=5(人)
【知识点】复式条形统计图的特点及绘制;百分数的应用--求百分率
【解析】【分析】(1)A组学生本次测试的通过率=A组学生本次测试通过的人数÷A组学生总人数;
(2)B组学生科学测试成绩在60-69分的人数=(B组学生科学测试成绩在60-69分以外的人数)÷(1-B组学生科学测试成绩在60-69分的人数占的分率)×B组学生科学测试成绩在60-69分的人数占的分率,依据计算出的数据、图例画出直条。
27.【答案】解:320÷(1-60%)
=320÷40%
=800(米)
答:他参加的是800米的长跑比赛。
【知识点】百分数的应用--运用除法求总量
【解析】【分析】小军参加长度比赛的长度=此时终点的距离÷(1-小军已经跑了全程的百分之几),据此代入数值作答即可。
28.【答案】解:300÷(1+20%)+300÷(1﹣20%)
=300÷120%+300÷80%
=250+375
=625(元)
300×2=600(元)
625>600
答:超市卖出这两件商品后,是赚了。
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】此题主要考查了百分数的应用,把两件商品的原价都看作单位“1”,现在的标价都相同,分别求出两件的原价,标价÷(1+盈利的百分比)=第一件商品的原价,标价÷(1-亏本的百分比)=第二件商品的原价,然后相加,可以得到两件商品的原价之和,再用加法求出两件商品的现价之和,如果现价比原价多,则赚了,否则,亏本了。
1 / 1人教版小学数学六年级上册第六单元 百分数(一) 提升练
一、单选题
1.(2023·汝州)一种商品,降价20元后,卖180元,比原价降低了( )
A.90% B.12.5% C.约11.1% D.10%
【答案】D
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:20÷(20+180)
=20÷200
=10%
故答案为:D。
【分析】用售价加上20元求出原价,用降低的钱数除以原价即可求出比原价降低了百分之几。
2.(2023六下·胶州期中)甲数比乙数多25%,甲、乙两数的最简比是( )
A.4:5 B.5:4 C.1:4 D.4:1
【答案】B
【知识点】百分数的应用--增加或减少百分之几;比的化简与求值
【解析】【解答】解:1×(1+25%)=125%,125%:1=5:4,所以甲、乙两数的最简比是5:4。
故答案为:B。
【分析】把乙数看成单位“1”,那么甲数=乙数×(1+甲数比乙数多百分之几),然后把两数作比即可。
3.汽车从A地到B地,原计划用10时到达,实际用了8时,速度提高了( )。
A.20% B.25% C.40% D.80%
【答案】B
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:(10-8)÷8=25%,所以速度提高了25%。
故答案为:B。
【分析】路程一定,速度和时间成反比;
4.在连续三个交易日中,某只股票第一天的收市价格是a 元,第二天涨了8%,第三天跌了8%,那么第三个交易日的收市价格( )。
A.低于a 元 B.等于a 元 C.高于a 元 D.无法确定
【答案】A
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:a×(1+8%)×(1-8%)=0.9936a
故答案为:A。
【分析】第三个交易日的收市价格=第一日的收市价格×(1+第二天涨了8%)×(1-第三天跌了8%),据此代入数值作答即可。
5.(2023·尉氏)张老师买了36本科技书和25本故事书,准备奖励这学期的阅读小明星。淘淘根据这些信息提出了一个数学问题并列出了算式“(36﹣25)÷25”,你认为淘淘提出的问题是( )
A.科技书是故事书的百分之几 B.故事书比科技书少百分之几
C.科技书比故事书多百分之几 D.故事书占两种书的百分之几
【答案】C
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:算式“(36﹣25)÷25”求出的是科技书比故事书多百分之几。
故答案为:C。
【分析】用两种书的本数差除以36求出的是故事书比科技书少百分之几;用两种书的本数差除以25求出的是科技书比故事书多百分之几。
6.田田和福福在美术课上做手工剪纸。田田用一张边长是10厘米的正方形纸剪了一个最大的扇形,福福用一张边长是4厘米的正方形纸剪了一个最大的圆。对手工纸的利用率相比( )。
A.田田高 B.福福高 C.两人相同 D.无法判断
【答案】C
【知识点】圆的面积;百分数的应用--求百分率
【解析】【解答】解:田田纸上扇形的面积:102×π×=25π(平方厘米),利用率:25π÷(10×10)=π;福福纸上圆的面积:(4÷2)2×π=4π,利用率:4π÷(4×4)=π。综上,两人对手工纸的利用率相同。
故答案为:C。
【分析】田田纸上扇形的面积=正方形纸的边长2×π×,所以田田纸的利用率: 田田纸上扇形的面积÷田田纸的面积;
福福纸上圆形的面积=(正方形纸的边长÷2)2×π,所以福福纸的利用率: 福福纸上圆形的面积÷福福纸的面积。
最后比较两人纸的利用率即可。
7.(2023·芜湖)下面4杯糖水中,最甜的是( )
A.含糖率为10%
B.糖与水的质量比是1:10
C.10克水中放了2克糖
D.100克含糖率10%的糖水中再加入10克糖
【答案】D
【知识点】百分数的应用--求百分率
【解析】【解答】解:A项:含糖率为10%;
B项:1÷(1+10)
=1÷11
≈9.1%;
C项:2÷(10+2)
=2÷12
≈16.7%;
D项:(100×10%+10)÷(100+10)
=20÷110
≈18.2%;
18.2%>16.7%>10%>9.1%。
故答案为:D。
【分析】含糖率=糖的质量÷(糖的质量+水的质量),然后比较大小,含糖率越高就越甜。
8.(2023·大东)金首饰的含金量用“12K”“18K”“24K“等来表示。“12K”表示含金量是50%,“24K”表示含金量是100%,那么“18K”表示的含金量是( )
A.65% B.80% C.75% D.90%
【答案】C
【知识点】百分数的应用--求百分率
【解析】【解答】解:18÷24=75%
故答案为:C。
【分析】用18除以24,用百分数表示得数,这样就能求出“18K”金的含金量。
二、填空题
9.(2023·宜春)某小学植树节组织学生种了200棵树,结果有8棵没有成活,这批树的成活率是 %。若计划明年植树比今年的200棵多20%,则明年将植树 棵。
【答案】96;240
【知识点】百分数的应用--增加或减少百分之几;百分数的应用--求百分率
【解析】【解答】解:(200-8)200100 %
=192200100 %
=0.96100 %
=96 %
200(1+20 % )
=2001.2
=240(棵)
故答案为:96 ;240。
【分析】根据成活率=成活棵数植树总棵树100 %,即可算出结果;把今年植树的棵树看作单位“1”,则明年植树的棵数是今年的(1+20 % ),据此列式计算。
10.(2023·中山) =3÷4= :20= %= (填小数)
【答案】9;15;75;0.75
【知识点】分数与小数的互化;百分数与分数的互化;比与分数、除法的关系
【解析】【解答】解:3÷4=,12×=9,20×=15,所以=3÷4=15:20=75%=0.75。
故答案为:9;15;75;0.75。
【分析】分数的分子=分母×分数值;比的前项=比的后项×比值;
分数化百分数,先把分数写成分母是100的分数,然后写成百分数的形式;
百分数化小数,先把百分号去掉,再把小数点向左移动两位。
11. 王老师爱好买股票,去年买了一只股票后,形势不好跌了36%,这只股票今年至少要涨 %,王老师才能保本。
【答案】56.25
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:1×(1-36%)=64%,(1-64%)÷64%=56.25%,所以这只股票今年至少要涨56.25%,王老师才能保本。
故答案为:56.25。
【分析】把这只股票看成单位“1”,那么去年跌了后的股票=这只股票×(1-去年跌了百分之几),所以这只股票今年至少要涨百分之几=(这只股票-去年跌了后的股票)÷去年跌了后的股票。
12.(2023·五指山)100名学生参加毕业考试,有5名学生不合格,这次考试的合格率是 。如果只有95人参加考试,全部合格,合格率是 。
【答案】95%;100%
【知识点】百分数的应用--求百分率
【解析】【解答】解:(100-5)÷100=95÷100=95%;
95÷95=100%。
故答案为:95%;100%。
【分析】考试的合格人数÷参加考试的人数=考试的合格率。
13.(2023六下·阿荣旗月考)5千克是4千克的 %,4千克比5千克少 %。50吨增加吨是 吨,50吨增加是 吨。
【答案】125;20;50.2;60
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:5÷4=125%;
(5-4)÷5
=1÷5
=20%;
50+=50.2(吨)
50×(1+)
=50×
=60(吨)。
故答案为:125;20;50.2;60。
【分析】求一个数是另一个数的百分之几,用除法计算;求一个数比另一个数多(或少)几分之几,用两数之差除以单位“1”;求比单位“1”多或少几分之几的数是多少,用乘加或乘减计算。
14.(2023·房山)在 、0. 、83%和0.8 中,最大的数是 ,最小的数是 。
【答案】;83%
【知识点】分数与小数的互化;百分数与小数的互化
【解析】【解答】解:=6÷7≈0.86;
83%=0.83;
>>>83%。
故答案为:;83%。
【分析】分数化成小数,用分数的分子除以分母;小数比较大小,先比较整数部分,整数部分大的数就大,如果整数部分相同,再比较小数部分十分位上的数,十分位上的数大的就大,如果十分位上的数相同就比较百分位上的数······直到比出大小为止。
15.(2023·乾县)今年植树节,光明小学种植了180棵树苗,其中10棵未成活,后来又补种了20棵,全部成活。今年光明小学种植树苗的成活率是 。
【答案】95%
【知识点】百分数的应用--求百分率
【解析】【解答】解:180-10+20=190(棵)
180+20=200(棵)
190÷200×100%
=0.95×100%
=95%
故答案为:95%。
【分析】成活率是指成活的棵树占总棵树的百分比,计算方法是:成活率=成活棵数÷总棵数×100%;先求出成活的棵数和总棵数再求解。
16.(2023·硚口模拟)已知a×120%=b÷=c÷1=d×(a、b、c、d四个数均不为0),则这四个数中最大的是 ,最小的是 。
【答案】c;b
【知识点】百分数与分数的互化
【解析】【解答】解:b÷=b×,=c÷1=c×,因为<<120%<,所以最大的是c,最小的是b。
故答案为:c;b。
【分析】可以把除法转化成乘法,然后根据四个已知因数的大小判断四个字母表示数的大小。也可以把它们的积都看作1,分别计算出四个字母表示的数再比较大小。
17.(2023六下·安宁期末)儿童的负重最好不要超过自身体重的15%,如果长期背负过重物体,会妨碍骨骼生长。小明的体重是50千克,小明的书包最好不要超过 千克。
【答案】7.5
【知识点】百分数的应用--运用乘法求部分量
【解析】【解答】解:50×15%=7.5(千克),所以,小明的书包最好不要超过7.5千克。
故答案为:7.5。
【分析】小明书包最重的质量=小明的体重×儿童负重最多是自身的百分之几,据此代入数值作答即可。
18.(2023六下·兴宁期末)150kg油菜籽可榨油63kg,油菜籽的出油率是 。照这样计算,5t油菜籽可榨油 kg;要榨油1050kg,需要 kg 油菜籽。
【答案】42;2100;2500
【知识点】百分数的应用--求百分率
【解析】【解答】解:63÷150×100%
=0.42×100%
=42%
5吨=5000千克
5000×42%=2100(千克)
1050÷42%=2500(千克)
故答案为:42;2100;2500。
【分析】出油率=油的重量÷油菜籽的重量×100%,由此求出出油率,再根据其中的两个量求出第三个量。
19.(2023·郧阳模拟)11月份的汽油价格比10月份上涨了10%,12月份又比11月份回落了15%,12月的汽油价格与10月相比是 (填“涨”或“跌”)了,涨跌幅度是 %。
【答案】跌了;6.5%
【知识点】百分数的应用--增加或减少百分之几
【解析】【解答】解:10月份的汽油价格看做单位1,
11月份的汽油价格1+10%=1.1,
12月份的汽油价格1.1×(1-15%)=1.1×0.85=0.935,
12月的汽油价格与10月相比是跌了,
跌幅度是(1-0.935)÷1=0.065÷1=6.5%。
故答案为:跌了;6.5%。
【分析】求比一个数多百分之几的数是多少用乘法,列式为:这个数×(1+多的百分之几)=所求的数;求比一个数少百分之几的数是多少用乘法,列式为:这个数×(1-少的百分之几)=所求的数;求一个数比另一个数少百分之几,就用这两个数的差除以比后面的数。
20.(2023五下·碑林期末)把一个棱长2厘米的大正方体切成棱长是1厘米的小正方体,可以切成 块,每个小正方体的体积占大正方体体积的 %。
【答案】8;12.5
【知识点】正方体的体积;百分数的应用--求百分率
【解析】【解答】解:(2×2×2)÷(1×1×1)=8(块)
1÷8=12.5%
故答案为:8;12.5。
【分析】大正方体的体积÷小正方体的体积=可以切的块数;小正方体的体积÷大正方体的体积=每个小正方体的体积占大正方体体积的百分数。
三、计算题
21.(2023六下·奎文月考)列式计算
(1)
(2)
【答案】(1)解:150×(1+40%)
=150×140%
=210(棵)
(2)解:150÷(1-40%)
=150÷60%
250(棵)
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】(1)梨树的棵数=桃树的棵数×(1+多的百分率);
(2)樱桃的棵数=杏子的棵数÷(1-少的百分率)。
四、作图题
22.(2023六下·岳池期末)请用阴影表示下列各百分数。
【答案】解:
【知识点】百分数的意义与读写
【解析】【分析】27%表示正方形被平均分成100份,涂色部分占27份;
60%表示圆被平均分成10份,涂色部分占6份;
25%表示长方形被平均分成8份,涂色部分占2份。
五、解决问题
23.(2023六上·富县期末)某市场2月份的蔬菜价格比1月份上涨了15%,春天供应量增加,3月份的价格比2月份下降了10%,3月份的价格和1月份相比是涨了还是降了?涨(或降)了多少?
【答案】解:1月份的蔬菜价格看做1;
2月份的蔬菜价格:1×(1+15%)=1.15;
3月份的蔬菜价格:1.15×(1-10%)=1.035;
1.035>1,涨了,
1.035-1=3.5%
答:3月份的价格和1月份相比是涨了,涨了3.5%。
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】求比一个数多百分之几的数是多少用乘法,列式为:这个数×(1+多的百分之几)=所求的数;
求比一个数少百分之几的数是多少用乘法,列式为:这个数×(1-少的百分之几)=所求的数。
24.
(1)11月份的用电量比10月份多百分之几
(2)如果12月份比11月份节约用电8%,每千瓦时电费0.57元,12月份的电费是多少元
【答案】(1)解:(100-80)÷80×100%
=20÷80×100%
=0.25×100%
=25%
答:11月份的用电量比10月份多25%。
(2)解:100×(1-8%)×0.57
=100×0.92×0.57
=92×0.57
=52.44(元)
答:12月份的电费是52.44元。
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】(1)把10月份的用电量看作单位“1”,11月份的用电量比10月份多百分之几=(11月份的用电量-10月份的用电量)÷10月份的用电量;
(2)把11月份的用电量看作单位“1”,12月份的用电量=11月份的用电量×(1-12月份比11月份节约用电百分之几),12月份的电费=每千瓦时的电费×12月份的用电量。
25.(2023·炎陵)“双减”后,实验小学的课后服务课程更加丰富多彩了。在学校的艺术社团中,女生有80人,比男生多25%。艺术社团的男生有多少人?
【答案】解:80÷(1+25%)
=80÷1.25
=64(人)
答:艺术社团的男生有64人。
【知识点】百分数的应用--运用除法求总量
【解析】【分析】此题主要考查了百分数的应用,把男生的人数看作单位“1”,女生的人数÷(1+25%)=男生的人数,据此列式解答。
26.(2023六下·罗湖期末)右下图是A、B两组学生参加科学测试的结果,每组的测试结果都刚好分布在五个分数段中。当学生的测试分数为50分及以上时。表示通过了这次测试。
(1)A组学生本次测试的通过率是多少? (百分号前保留一位小数)
(2)B组学生科学测试成绩在60-69分的占全组的,请在图上画出表示该分数段人数的条那统计图。
【答案】(1)解:(3+4+2+2)÷(1+3+4+2+2)
=11÷12
≈91.7%
答:A组学生本次测试的通过率是91.7%。
(2)解:(2+1+3+1)÷(1-)
=7÷
=12(人)
12×=5(人)
【知识点】复式条形统计图的特点及绘制;百分数的应用--求百分率
【解析】【分析】(1)A组学生本次测试的通过率=A组学生本次测试通过的人数÷A组学生总人数;
(2)B组学生科学测试成绩在60-69分的人数=(B组学生科学测试成绩在60-69分以外的人数)÷(1-B组学生科学测试成绩在60-69分的人数占的分率)×B组学生科学测试成绩在60-69分的人数占的分率,依据计算出的数据、图例画出直条。
27.(2023六下·天门月考)小军参加全市小学生田径运动会长跑比赛,这时:
①他跑了全程的60%;
②超过中点10%;
③距离终点还有320米。
根据以上信息,他参加的是多少米的长跑比赛?
【答案】解:320÷(1-60%)
=320÷40%
=800(米)
答:他参加的是800米的长跑比赛。
【知识点】百分数的应用--运用除法求总量
【解析】【分析】小军参加长度比赛的长度=此时终点的距离÷(1-小军已经跑了全程的百分之几),据此代入数值作答即可。
28.(2023·炎陵)某超市在“6 18”大促期间出售两件不同的商品,标价都是300元,其中一件盈利20%,一件亏本20%。超市卖出这两件商品后,是赚了还是亏了?请用数据说明。
【答案】解:300÷(1+20%)+300÷(1﹣20%)
=300÷120%+300÷80%
=250+375
=625(元)
300×2=600(元)
625>600
答:超市卖出这两件商品后,是赚了。
【知识点】百分数的应用--增加或减少百分之几
【解析】【分析】此题主要考查了百分数的应用,把两件商品的原价都看作单位“1”,现在的标价都相同,分别求出两件的原价,标价÷(1+盈利的百分比)=第一件商品的原价,标价÷(1-亏本的百分比)=第二件商品的原价,然后相加,可以得到两件商品的原价之和,再用加法求出两件商品的现价之和,如果现价比原价多,则赚了,否则,亏本了。
1 / 1
点击下载
同课章节目录
1 分数乘法
2 位置与方向(二)
3 分数除法
1 倒数的认识
2 分数除法
整理和复习
4 比
5 圆
1 圆的认识
2 圆的周长
3 圆的面积
4 扇形
整理和复习
确定起跑线
6 百分数(一)
7 扇形统计图
节约用水
8 数学广角——数与形
9 总复习
点击下载
VIP下载