孔镇中学下册导学案
科目:数学 主备; 郭凤英总第15节
课题8.2二元一次方程组的解法(3)
学习目标
(1)学会使用方程变形,再用加减消元法解二元一次方程组.
(2)解决问题的一个基本思想:化归,即将“未知”化为“已知”,将“复杂”转为“简单”。
学习重、难点:
1、用加减消元法解系数绝对值不相等的二元一次方程组
2、使方程变形为较恰当的形式,然后加减消元
学习方法:自主学习 合作探究
一 自主学习
1、方程组中,方程(1)的y的系数与方程(2)的y的系数 ,由①+②可消去未知数 ,从而得到 ,把x= 代入 中,可得y= .
2、方程组中,方程(1)的m的系数与方程(2)的m的系数 ,
由( )○( )可消去未知数 .
3 、用加减法解方程组
4、用加减消元法解二元一次方程组的基本思路仍然是 消元 .
两个二元一次方程中,同一个未知数的系数_______或______ 时,把这两个方程的两边分别 _______或________ ,就能________这个未知数,得到一个____________方程,这种方法叫做________________,简称_________。
二 合作探究
1、下面的方程组直接用(1)+(2),或(1)-(2)还能消去某个未知数吗?
仍用加减消元法如何消去其中一个未知数?
两边都乘以2,得到: (3)
观察:(2)和(3)中 的系数 ,将这两个方程的两边分别 ,就能得到一元一次方程 。
◆基本思路:将将原方程组的两个方程化为有一个未知数的系数相同或者相反的两个方程,再将两个方程两边分别相减或相加,消去其中一个未知数,得到一元一次方程。
三精讲点拨:
师规范解答 :
解:(1)×2得: ……(3)
(1)+(3)得:
将 代入 得:
所以原方程的解为:
四巩固训练:
五 达标测试:
用加减消元法解下列方程组孔镇中学下册导学案
科目:数学 主备 郭凤英 第13节
课题:8.2二元一次方程组的解法(1)
学习目标
会运用代入消元法解二元一次方程组.
学习重、难点
1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
学习方法:自主学习 合作探究
一自主学习 :
基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程.
二合作探究 :
1、将方程5x-6y=12变形:若用含y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。
2、用代人法解方程组①②,把____代人____,可以消去未知数______,方程变为:
3、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
4、若的解,则a=______,b=_______。
5、已知方程组的解也是方程组的解,则a=_______,b=________ ,3a+2b=___________。
6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。
三精讲点拨:
用代入法解下列方程组:
⑴ ⑵ ⑶
四 展示提升:
1. 若∣m+n-5∣+(2m+3n-5)2=0,求(m+n)2的值
2.已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m
五 达标测试:
1、方程组的解是( )
A. B. C. D.
2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。
3、用代入法解下列方程组
⑴ ⑵
⑶ ⑷
⑸ ⑹
(1)
4、如果(5a-7b+3)2+=0,求a与b的值。
5、若方程组与有公共的解,求a,b.
6、当k=______时,方程组的解中x与y的值相等。
7、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。
8、对于关于x、y的方程y=kx+b,k比b大1,且当x=时,y=,则k、b的值分别是( )
A. B.2,1 C.-2,1 D.-1,0
【教学反思】孔镇中学下册导学案
学科 数学 主备:郭凤英 总第16节
第8章复习课一(解法)学案
复习目标
1.知道二元一次方程组及其相关的概念,能用代入消元法和加减消元法解二元一次方程组.
2.能用代入消元法和加减消元法解三元一次方程组
3.能根据方程组的具体形式选择适当的解法.
复习重难点:熟练解方程组 ,根据方程组的特点灵活选用解法
一知识回顾
1.已知方程①2x+y=3;②x+2=1;③ y=5-x; ④x-xy=10;⑤x+y+z=6中二元一次方程有_____________.(填序号)
2.在方程3x-ay=8中,如果是它的一个解,则a的值为________.
3.把面值2元的纸币换成1角或5角的硬币,则换发共有( )种.
A.4 B.5 C.6 D.7
4.下列是二元一次方程组的是( ).
A. B.C. D.
5.方程组的解为,则里的两个数分别是( ).
A.3,1 B.5,1 C.2,3 D.2,4
6.在3x+4y=9中,如果2y=6,那么x=_______.
7.解下列方程组.
二合作探究:
.若关于x.y的二元一次方程组的解均是正数,那么a的取值范围是( ).
A.-3<a<6 B.a>6 C.a<-3 D.不存在
用代入法解方程组
三 精讲点拨:
你能选择合适方法,解出下列各题吗?
(1) (2)
四 变式练习 :
1解方程组
2:解方程组
五 当堂达标 :
1.下列各组数中,不是方程3x-2y-1=0的解的是( )
A. x=1, y=1; B. x=2, y=; C. x=0, y=; D x=2, y=1.
2.已知x + y=4,且x-y=10,则2xy= ________
3.解下列方程组
(1) (2)孔镇中学下册导学案
科目:数学 主备:郭凤英 总14节
课题:8.2二元一次方程组的解法(2)
学习目标
(1)会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。
(2)通过探求二元一次方程组的解法,经历用加减法把 “二元”化为“一元”的过程,体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想.
学习重、难点
1、用加减法解二元一次方程组.
2、两个方程相减消元时,对被减的方程各项符号要做变号处理。
学习方法:自主学习 合作探究
一 自主学习
知识链接:怎样解下面二元一次方程组呢?
自学导引
1、观察上面的方程组:
归纳:两个二元一次方程组中,同一个未知数的系数 或 时,把这两个方程的两边分别 或 ,就能消去这个未知数,得到一个 方程,这种方法就叫做加减消元法。
2、用加减消元法解下列方程组
①
②
三精讲点 播:
师规范解答
由○1+○2得: ---第一步:加减
将 代入①,得 ---第二步:求解
所以原方程组的解为 ---第三步:写解
四 合作探究
用加减消元法解方程组
○1
○2
五 达标测试
解下列方程
未知数y的系数 ,若把方程(1)和方程(2)相加可得:
(注:左边和左边相加,右边和右边相加。)
( )+( )= +
12x=24
发现二:如果未知数的系数互为 则两个方程左右两边分别 可以消去一个未知数.
未知数x的系数 ,若把方程(1)和方程(2)相减可得:
(注:左边和左边相减,右边和右边相减。)
( )-( )= -
14y=14
发现一:如果未知数的系数相同则两个方程左右两边分别相减也可消去一个未知数.
提示:观察方程组:方程组中方程○1 eq \o\ac(○,1)、○2 eq \o\ac(○,2)未知数 (x或y)的系数是相同的,可通过 ( 加或减)的方法消去 (x或y)。
观察方程组:方程组中方程○1 eq \o\ac(○,1)、○2 eq \o\ac(○,2)未知数 (x或y)的系数是相反的,可通过 ( 加或减)的方法消去 (x或y)。孔镇中学下册导学案
科目:数学 主备:郭凤英第12课时
课题:8.1二元一次方程组
学习目标
1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;
2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
学习重点
1、二元一次方程(组)的含义;
2、用一个未知数表示另一个未知数。
学习难点 检验一对数是否是某个二元一次方程(组)的解;
学习方法:自主学习 合作探究
一自主学习 :
二元一次方程的概念
1.我们来看一个问题:
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?
思考:(P93)
以上问题包含了哪些必须同时满足的条件 设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗
______场数+______场数=总场数; ______积分+______积分=总积分,
这两个条件可以用方程
x+y=22,
2x+y=40 表示。
观察:这两个方程有什么特点 与一元一次方程有什么不同
归纳:①定义___________________________________________________叫做二元一次方程
2.二元一次方程的左边和右边都应是整式
②二元一次方程的一般形式:ax + by + c = 0 (其中a≠0、b≠0 且a、b、c为常数)
注意:1.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。
③二元一次方程的解:
使二元一次方程两边的值__________的两个未知数的_______叫做二元一次方程的解。
二合作探究 :
----什么是二元一次方程组和它的解
1. 已知、都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。
① ②
③ ④
2、把3(x+5)=5(y-1)+3化成ax+by=c的形式为_____________。
3、方程3x+2y=6,有______个未知数,且未知数都是___次,因此这个方程是_____元_____次方程。
4、下列式子①3x+2y-1;②2(2-x)+3y+5=0;③3x-4y=z;④x+xy=1;⑤y +3y=5x;⑥4x-y=0;⑦2x-3y+1=2x+5;⑧+=7中;是二元一次方程的有_________(填序号)
5、若x m-1+5y3n-2m=7是二元一次方程,则m=______,n=_______。
三精讲点拨:
1方程mx 2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )
A.m≠0 B.m≠ 2 C.m≠3 D.m≠4
2、已知是方程3x-my=1的一个解,则m=__________。
3、已知下列三对数:;; 满足方程x-3y=3的是_______________;满足方程3x-10y=8的是__________;方程组的解是________________。
四学习反思:
五达标测试:
(一)、精心选一选
1.下列方程组中,不是二元一次方程组的是( )
A. B. C. D.
2.已知的值:①②③④其中,是二元一次方程的解的是( )
A.① B.② C.③ D.④
3.若方程有一解则的值等于( )
A. B. D. D.
4.已知一个二元一次方程组的解是则这个方程组是( )
A. B.C. D.
(二)、细心填一填
1.买支铅笔和本练习本,其中铅笔每支元,练习本每本元,共需用元.①列出关于的二元一次方程为_____;②若再买同样的铅笔支和同样的练习本本,价钱是元,列出关于的二元一次方程为_____;③若铅笔每支元,则练习本每本_____元.
2.在二元一次方程中,当时,_____.
3.已知是二元一次方程的一个解,则_____.
(三)、耐心做一做
1、已知二元一次方程2x-3y=-15.
⑴用含y的式子表示x;
⑵用含x的式子表示y.
2、已知(y-3)2=0,求x+y的值。