课件22张PPT。高中数学·必修4·北师大版§3 二倍角的三角函数(一)[学习目标]
1.会从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式.
2.能熟练运用二倍角的公式进行简单的恒等变换,并能灵活地将公式变形运用.2sin αcos α cos2α-sin2α 2cos2α-1 1-2sin2α cos α sin α 1±sin 2α 规律方法 此类题型(1)(2)(3)小题直接利用公式或逆用公式较为简单,而(4)小题分式一般先通分,再考虑结合三角函数公式的逆用从而使问题得解.而(5)小题通过观察角度的关系,发现其特征(二倍角形式),逆用正弦二倍角公式,使得问题中可连用正弦二倍角公式,所以在解题过程中要注意观察式子的结构特点及角之间是否存在特殊的倍数关系,灵活运用公式及其变形,从而使问题迎刃而解.规律方法 在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出角.其中确定角的范围是关键的一步.再见课件24张PPT。高中数学·必修4·北师大版§3 二倍角的三角函数(二)[学习目标]
1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.
2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.[知识链接]
1.代数式变换与三角变换有什么不同?
答 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.2sin αcos α cos2α-sin2α 2cos2α-1 1-2sin2α 点(a,b) 规律方法 (1)式子中含有1+cos θ,1-cos θ等形式时,常需要用半角公式升幂.
(2)在开方时要注意讨论角的范围.要点三 三角变换在实际中的应用
例3 点P在直径AB=1的半圆上移动,过P作圆的切线PT且PT=1,∠PAB=α,问α为何值时,四边形ABTP面积最大?
解 如图所示,∵AB为直径,
∴∠APB=90°,又AB=1,
∴PA=cos α,PB=sin α.
又PT切圆于P点,∠TPB=∠PAB=α,规律方法 解答此类问题,关键是合理引入辅助角α,将实际问题转化为三角函数问题,再利用三角函数的有关知识求解,在求解过程中,要注意角的范围.跟踪演练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m,求割出的长方形桌面的最大面积(如图).再见