2008年高考数学试题分类汇编
直线与圆
一.选择题:
1,(上海卷15 ( http: / / www. ))如图,在平面直角坐标系 ( http: / / www. )中,是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成的区域(含边界),A、B、C、D是该圆的四等分点.若点、点满足且,则称P优于.如果中的点满足:不存在中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧( D )
A.弧AB B.弧BC
C.弧CD D.弧DA
2.(全国一10)若直线通过点,则( D )
A. B. C. D.
3.(全国二5 ( http: / / www. ))设变量 ( http: / / www. )满足约束条件:,则的最小值( D )
A. B. C. D.
4.(全国二11 ( http: / / www. ))等腰三角形 ( http: / / www. )两腰所在直线的方程分别为与,原点在等腰三角形的底边上,则底边所在直线的斜率为( A )
A.3 B.2 C. D.
5.(北京卷5)若实数满足则的最小值是( B )
A.0 B.1 C. D.9
6.(北京卷7)过直线上的一点作圆的两条切线,当直线关于对称时,它们之间的夹角为( C )
A. B. C. D.
7.(四川卷4)直线绕原点逆时针旋转,再向右平移1个单位,所得到的直线为( A )
(A) (B) (C) (D)
8.(天津卷2)设变量满足约束条件,则目标函数的最大值为D
(A)2 (B)3 (C)4 (D)5
9.(安徽卷8).若过点的直线与曲线有公共点,则直线的斜率的取值范围为( C )
A. B. C. D.
10.(山东卷11)已知圆的方程为.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为B
(A)10 (B)20 (C)30 (D)40
11.(山东卷12)设二元一次不等式组所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是C
(A)[1,3] (B)[2,] (C)[2,9] (D)[,9]
12.(湖北卷9)过点作圆的弦,其中弦长为整数的共有C
A.16条 B. 17条 C. 32条 D. 34条
13.(湖南卷3)已知变量x、y满足条件则的最大值是( C )
A.2 B.5 C.6 D.8
14.(陕西卷5 ( http: / / www. ))直线与圆相切,则实数等于( C )
A.或 B.或 C.或 D.或
15.(陕西卷10)已知实数满足如果目标函数的最小值为,则实数等于( B )
A.7 B.5 C.4 D.3
16.(重庆卷3)圆O1:和圆O2: 的位置关系是B
(A)相离 (B)相交 (C)外切 (D)内切
17.(辽宁卷3)圆与直线没有公共点的充要条件是( C )
A. B.
C. D.
二.填空题:
1.(天津卷15)已知圆C的圆心与点关于直线对称.直线与圆C相交于两点,且,则圆C的方程为__________________.
2.(全国一13)若满足约束条件则的最大值为 .9
3.(四川卷14)已知直线与圆,则上各点到的距离的最小值为_______。
4.(安徽卷15)若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为
5.(江苏卷9)在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程:,请你求OF的方程: 。.
6.(重庆卷15)直线l与圆 (a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为 . x-y+1=0
7.(福建卷14)若直线3x+4y+m=0与圆 (为参数)没有公共点,则实数m的取值范围是 .
8.(广东卷11)经过圆的圆心,且与直线垂直的直线
方程是 .
9.(浙江卷17)若,且当时,恒有,则以,b为坐标点P(,b)所形成的平面区域的面积等于____________。1
三.解答题:
1.(北京卷19)(本小题共14分)
已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.
解:(Ⅰ)由题意得直线的方程为.
因为四边形为菱形,所以.
于是可设直线的方程为.
由得.
因为在椭圆上,
所以,解得.
设两点坐标分别为,
则,,,.
所以.
所以的中点坐标为.
由四边形为菱形可知,点在直线上,
所以,解得.
所以直线的方程为,即.
(Ⅱ)因为四边形为菱形,且,
所以.
所以菱形的面积.
由(Ⅰ)可得,
所以.
所以当时,菱形的面积取得最大值.
2.(江苏卷18)设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
【解析】本小题主要考查二次函数图象与性质、圆的方程的求法.
(Ⅰ)令=0,得抛物线与轴交点是(0,b);
令,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令=0 得这与=0 是同一个方程,故D=2,F=.
令=0 得=0,此方程有一个根为b,代入得出E=―b―1.
所以圆C 的方程为.
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0+1+2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
3.(湖北卷19)(本小题满分13分)
如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,
,曲线是满足为定值的动点的轨迹,且曲线过点.
(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;
(Ⅱ)设过点的直线l与曲线相交于不同的两点、.
若△的面积不小于,求直线斜率的取值范围.
本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设实平轴长为a,虚半轴长为b,半焦距为c,
则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为.
解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设双曲线的方程为>0,b>0).
则由解得a2=b2=2,
∴曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴
∴k∈(-,-1)∪(-1,1)∪(1,).
设E(x,y),F(x2,y2),则由①式得x1+x2=,于是
|EF|=
=
而原点O到直线l的距离d=,
∴S△DEF=
若△OEF面积不小于2,即S△OEF,则有
③
综合②、③知,直线l的斜率的取值范围为[-,-1]∪(1-,1) ∪(1, ).
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴
∴k∈(-,-1)∪(-1,1)∪(1,).
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|= ③
当E、F在同一去上时(如图1所示),
S△OEF=
当E、F在不同支上时(如图2所示).
S△ODE=
综上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面积不小于2
④
综合②、④知,直线l的斜率的取值范围为[-,-1]∪(-1,1)∪(1,).
A
B
C
D
O
x
y
PAGE
92008年高考数学试题分类汇编
立体几何
一.选择题:
1.(上海卷13) 给定空间中的直线l及平面,条件“直线l与平面内无数条直线都垂直”是“直线l与平面垂直”的( C )条件
A.充要 B.充分非必要 C.必要非充分 D.既非充分又非必要
2.(全国一11)已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于( C )
A. B. C. D.
3.(全国二10)已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( C )
A. B. C. D.
4.(全国二12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( C )
A.1 B. C. D.2
5.(北京卷8)如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是( B )
7.(四川卷8)设是球心的半径上的两点,且,分别过作垂线于的面截球得三个圆,则这三个圆的面积之比为:( D )
(A) (B) (C) (D)
8.(四川卷9)设直线平面,过平面外一点与都成角的直线有且只有:( B )
(A)1条 (B)2条 (C)3条 (D)4条
9.(天津卷5)设是两条直线,是两个平面,则的一个充分条件是C
(A) (B)
(C) (D)
10.(安徽卷4).已知是两条不同直线,是三个不同平面,下列命题中正确的是(D )
A. B.
C. D.
11.(山东卷6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是D
(A)9π (B)10π
(C)11π (D)12π
12.(江西卷10)连结球面上两点的线段称为球的弦。半径为4的球的两条弦、的长度分别等于、,、分别为、的中点,每条弦的两端都在球面上运动,有下列四个命题:
①弦、可能相交于点 ②弦、可能相交于点
③的最大值为5 ④的最小值为1
其中真命题的个数为C
A.1个 B.2个 C.3个 D.4个
13.(湖北卷3)用与球心距离为的平面去截球,所得的截面面积为,则球的体积为B
A. B. C. D.
14,(湖南卷5)设有直线m、n和平面、.下列四个命题中,正确的是( D )
A.若m∥,n∥,则m∥n
B.若m,n,m∥,n∥,则∥
C.若,m,则m
D.若,m,m,则m∥
15.(湖南卷9)长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2,AD=,AA1=1,则顶点A、B间的球面距离是( C )
A.2 B. C. D.
16.(陕西卷9 ( http: / / www. ))如图,到的距离分别是和,与所成的角分别是和,在内的射影分别是和,若,则( D )
A. B.
C. D.
17.(陕西卷14)长方体的各顶点都在球的球面上,其中.两点的球面距离记为,两点的球面距离记为,则的值为 .
18.(重庆卷 9)如解(9)图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是D
(A)V1= (B) V2=
(C)V1> V2 (D)V1< V2
19.(福建卷6)如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为D
A. B.
C. D.
20.(广东卷5)将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( A )
21.(辽宁卷11)在正方体ABCDA1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( D )
A.不存在 B.有且只有两条 C.有且只有三条 D.有无数条
22.(海南卷12)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a + b的最大值为( C )
A. B. C. 4 D.
23.(海南卷15)一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,那么这个球的体积为 ______
二.填空题:
1.(天津卷13)若一个球的体积为,则它的表面积为________________.12
2.(全国一16)等边三角形与正方形有一公共边,二面角的余弦值为,分别是的中点,则所成角的余弦值等于 .
3.(全国二16)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:
充要条件① ;
充要条件② .
(写出你认为正确的两个充要条件)(两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.)
4.(四川卷15)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于________________。
5.(安徽卷16)已知在同一个球面上,若,则两点间的球面距离是
6.(江西卷16)如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点P。如果将容器倒置,水面也恰好过点(图2)。有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半
B.将容器侧面水平放置时,水面也恰好过点
C.任意摆放该容器,当水面静止时,水面都恰好经过点
D.若往容器内再注入升水,则容器恰好能装满
其中真命题的代号是: B,D (写出所有真命题的代号).
7.(福建卷15)若三棱锥的三个侧圆两两垂直,且侧棱长均为,则其外接球的表面积是 . 9
8.(浙江卷14)如图,已知球O点面上四点A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,则球O点体积等于___________。
9.(辽宁卷14)在体积为的球的表面上有A,B,C三点,AB=1,BC=,A,C两点的球面距离为,则球心到平面ABC的距离为_________.
三.解答题:
1.(全国一18)(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面,,,.
(Ⅰ)证明:;
(Ⅱ)设与平面所成的角为,求二面角的大小.
解:(1)取中点,连接交于点,
,,
又面面,面,
.
,
,,即,
面,.
(2)在面内过点作的垂线,垂足为.
,,面,,
则即为所求二面角的平面角.
,,,
,则,
,即二面角的大小.
2.(全国二19 ( http: / / www. ))(本小题满分12分)
如图,正四棱柱中,,点在上且.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的大小.
解法一:
依题设知,.
(Ⅰ)连结交于点,则.
由三垂线定理知,. 3分
在平面内,连结交于点,
由于,
故,,
与互余.
于是.
与平面内两条相交直线都垂直,
所以平面. 6分
(Ⅱ)作,垂足为,连结.由三垂线定理知,
故是二面角的平面角. 8分
,
,.
,.
又,.
.
所以二面角的大小为. 12分
解法二:
以为坐标原点,射线为轴的正半轴,
建立如图所示直角坐标系.
依题设,.
,
. 3分
(Ⅰ)因为,,
故,.
又,
所以平面. 6分
(Ⅱ)设向量是平面的法向量,则
,.
故,.
令,则,,. 9分
等于二面角的平面角,
.
所以二面角的大小为. 12分
3.(北京卷16)如图,在三棱锥中,,,,.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
解法一:
(Ⅰ)取中点,连结.
,
.
,
.
,
平面.
平面,
.
(Ⅱ),,
.
又,
.
又,即,且,
平面.
取中点.连结.
,.
是在平面内的射影,
.
是二面角的平面角.
在中,,,,
.
二面角的大小为.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
过作,垂足为.
平面平面,
平面.
的长即为点到平面的距离.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中,,,
.
.
点到平面的距离为.
解法二:
(Ⅰ),,
.
又,
.
,
平面.
平面,
.
(Ⅱ)如图,以为原点建立空间直角坐标系.
则.
设.
,
,.
取中点,连结.
,,
,.
是二面角的平面角.
,,,
.
二面角的大小为.
(Ⅲ),
在平面内的射影为正的中心,且的长为点到平面的距离.
如(Ⅱ)建立空间直角坐标系.
,
点的坐标为.
.
点到平面的距离为.
4.(四川卷19).(本小题满分12分)
如,平面平面,四边形与都是直角梯形,
,
(Ⅰ)证明:四点共面;
(Ⅱ)设,求二面角的大小;
【解1】:(Ⅰ)延长交的延长线于点,由得
延长交的延长线于
同理可得
故,即与重合
因此直线相交于点,即四点共面。
(Ⅱ)设,则,
取中点,则,又由已知得,平面
故,与平面内两相交直线都垂直。
所以平面,作,垂足为,连结
由三垂线定理知为二面角的平面角。
故
所以二面角的大小
【解2】:由平面平面,,得平面,以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系
(Ⅰ)设,则
故,从而由点,得
故四点共面
(Ⅱ)设,则,
在上取点,使,则
从而
又
在上取点,使,则
从而
故与的夹角等于二面角的平面角,
所以二面角的大小
天津卷(19)(本小题满分12分)
如图,在四棱锥中,底面是矩形.已知.
(Ⅰ)证明平面;
(Ⅱ)求异面直线与所成的角的大小;
(Ⅲ)求二面角的大小.
(19)本小题主要考查直线和平面垂直,异面直线所成的角、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.满分12分.
(Ⅰ)证明:在中,由题设可得
于是.在矩形中,.又,
所以平面.
(Ⅱ)解:由题设,,所以(或其补角)是异面直线与所成的角.
在中,由余弦定理得
由(Ⅰ)知平面,平面,
所以,因而,于是是直角三角形,故.
所以异面直线与所成的角的大小为.
(Ⅲ)解:过点P做于H,过点H做于E,连结PE
因为平面,平面,所以.又,
因而平面,故HE为PE再平面ABCD内的射影.由三垂线定理可知,
,从而是二面角的平面角。
由题设可得,
于是再中,
所以二面角的大小为.
安徽卷(18).(本小题满分12分
如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
方法一(综合法)
(1)取OB中点E,连接ME,NE
又
(2)
为异面直线与所成的角(或其补角)
作连接
,
所以 与所成角的大小为
(3)点A和点B到平面OCD的距离相等,连接OP,过点A作
于点Q,
又 ,线段AQ的长就是点A到平面OCD的距离
,
,所以点B到平面OCD的距离为
方法二(向量法)
作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系
,
(1)
设平面OCD的法向量为,则
即
取,解得
(2)设与所成的角为,
, 与所成角的大小为
(3)设点B到平面OCD的距离为,则为在向量上的投影的绝对值,
由 , 得.所以点B到平面OCD的距离为
山东卷(20)(本小题满分12分)
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.
因为 E为BC的中点,所以AE⊥BC.
又 BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.
而 PA平面PAD,AD平面PAD 且PA∩AD=A,
所以 AE⊥平面PAD,又PD平面PAD.
所以 AE⊥PD.
(Ⅱ)解:设AB=2,H为PD上任意一点,连接AH,EH.
由(Ⅰ)知 AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=,
所以 当AH最短时,∠EHA最大,
即 当AH⊥PD时,∠EHA最大.
此时 tan∠EHA=
因此 AH=.又AD=2,所以∠ADH=45°,
所以 PA=2.
解法一:因为 PA⊥平面ABCD,PA平面PAC,
所以 平面PAC⊥平面ABCD.
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=,
又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=,
又
在Rt△ESO中,cos∠ESO=
即所求二面角的余弦值为
解法二:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以
E、F分别为BC、PC的中点,所以
A(0,0,0),B(,-1,0),C(C,1,0),
D(0,2,0),P(0,0,2),E(,0,0),F(),
所以
设平面AEF的一法向量为
则 因此
取
因为 BD⊥AC,BD⊥PA,PA∩AC=A,
所以 BD⊥平面AFC,
故 为平面AFC的一法向量.
又 =(-),
所以 cos<m, >=
因为 二面角E-AF-C为锐角,
所以所求二面角的余弦值为
江苏卷16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,
求证:(Ⅰ)直线EF ∥面ACD ;
(Ⅱ)面EFC⊥面BCD .
【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定.
(Ⅰ)∵ E,F 分别是AB,BD 的中点,
∴EF 是△ABD 的中位线,∴EF∥AD,
∵EF面ACD ,AD 面ACD ,∴直线EF∥面ACD .
(Ⅱ)∵ AD⊥BD ,EF∥AD,∴ EF⊥BD.
∵CB=CD, F 是BD的中点,∴CF⊥BD.
又EFCF=F,∴BD⊥面EFC.∵BD面BCD,∴面EFC⊥面BCD .
江西卷.解 :(1)证明:依题设,是的中位线,所以∥,
则∥平面,所以∥。
又是的中点,所以⊥,则⊥。
因为⊥,⊥,
所以⊥面,则⊥,
因此⊥面。
(2)作⊥于,连。因为⊥平面,
根据三垂线定理知,⊥,
就是二面角的平面角。
作⊥于,则∥,则是的中点,则。
设,由得,,解得,
在中,,则,。
所以,故二面角为。
解法二:(1)以直线分别为轴,建立空间直角坐标系,则
所以
所以
所以平面
由∥得∥,故:平面
(2)由已知设
则
由与共线得:存在有得
同理:
设是平面的一个法向量,
则令得
又是平面的一个法量
所以二面角的大小为
(3)由(2)知,,,平面的一个法向量为。
则。
则点到平面的距离为
湖北卷18.(本小题满分12分)
如图,在直三棱柱中,平面侧面.
(Ⅰ)求证:;
(Ⅱ)若直线与平面所成的角为,二面角的大小为,试判断与的大小关系,并予以证明.
18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分)
(Ⅰ)证明:如右图,过点A在平面A1ABB1内作
AD⊥A1B于D,则
由平面A1BC⊥侧面A1ABB1,且平面A1BC侧面A1ABB1=A1B,得
AD⊥平面A1BC,又BC平面A1BC,
所以AD⊥BC.
因为三棱柱ABC—A1B1C1是直三棱柱,
则AA1⊥底面ABC,
所以AA1⊥BC.
又AA1AD=A,从而BC⊥侧面A1ABB1,
又AB侧面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:连接CD,则由(Ⅰ)知是直线AC与平面A1BC所成的角,
是二面角A1—BC—A的平面角,即
于是在Rt△ADC中,在Rt△ADB中,
由AB<AC,得又所以
解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分
别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设AA1=a,AC=b,
AB=c,则 B(0,0,0), A(0,c,0), 于是
设平面A1BC的一个法向量为n=(x,y,z),则
由得
可取n=(0,-a,c),于是与n的夹角为锐角,则与互为余角.
所以
于是由c<b,得
即又所以
湖南卷17.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
解: 解法一(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,
△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD,
所以BE⊥AB.又因为PA⊥平面ABCD,平面ABCD,所以
PA⊥BE.而AB=A,因此BE⊥平面PAB.
又平面PBE,所以平面PBE⊥平面PAB.
(Ⅱ)延长AD、BE相交于点F,连结PF.
过点A作AH⊥PB于H,由(Ⅰ)知
平面PBE⊥平面PAB,所以AH⊥平面PBE.
在Rt△ABF中,因为∠BAF=60°,
所以,AF=2AB=2=AP.
在等腰Rt△PAF中,取PF的中点G,连接AG.
则AG⊥PF.连结HG,由三垂线定理的逆定理得,
PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).
在等腰Rt△PAF中,
在Rt△PAB中,
所以,在Rt△AHG中,
故平面PAD和平面PBE所成二面角(锐角)的大小是
解法二: 如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),
P(0,0,2),
(Ⅰ)因为,
平面PAB的一个法向量是,
所以共线.从而BE⊥平面PAB.
又因为平面PBE,
故平面PBE⊥平面PAB.
(Ⅱ)易知
设是平面PBE的一个法向量,则由得
所以
设是平面PAD的一个法向量,则由得
所以故可取
于是,
故平面PAD和平面PBE所成二面角(锐角)的大小是
陕西卷19 ( http: / / www. ).(本小题满分12分)
三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,,平面,,,,,.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的大小.
解法一:(Ⅰ)平面平面,
.在中,,
,,又,
,,即.
又,平面,
平面,平面平面.
(Ⅱ)如图,作交于点,连接,
由已知得平面.
是在面内的射影.
由三垂线定理知,
为二面角的平面角.
过作交于点,
则,,
.
在中,.
在中,.
,
即二面角为.
解法二:(Ⅰ)如图,建立空间直角坐标系,
则,
,.
点坐标为.
,.
,,,,又,
平面,又平面,平面平面.
(Ⅱ)平面,取为平面的法向量,
设平面的法向量为,则.
,
如图,可取,则,
,
即二面角为.
重庆卷(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)
如题(19)图,在中,B=,AC=,D、E两点分别在AB、AC上.使,DE=3.现将沿DE折成直二角角,求:
(Ⅰ)异面直线AD与BC的距离;
(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).
解法一:
(Ⅰ)在答(19)图1中,因,故BE∥BC.又因B=90°,从而
AD⊥DE.在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.
下求DB之长.在答(19)图1中,由,得
又已知DE=3,从而
因
(Ⅱ)在第(19)图2中,过D作DF⊥CE,交CE的延长线于F,连接AF.由(1)知,
AD⊥底面DBCE,由三垂线定理知AF⊥FC,故∠AFD为二面角A-BC-B的平面
角.
在底面DBCE中,∠DEF=∠BCE,
因此
从而在Rt△DFE中,DE=3,
在
因此所求二面角A-EC-B的大小为arctan
解法二:
(Ⅰ)同解法一.
(Ⅱ)如答(19)图3.由(Ⅰ)知,以D点为坐标原点,的方向为x、
y、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(0,0,4),
,E(0,3,0).
过D作DF⊥CE,交CE的延长线
于F,连接AF.
设从而
,有
①
又由 ②
联立①、②,解得
因为,故,又因,所以为所求的二面角A-EC-B的平面角.因有所以
因此所求二面角A-EC-B的大小为
福建卷(18)(本小题满分12分)
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出 的值;若不存在,请说明理由.
本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.
解法一:
(Ⅰ)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB=,
在Rt△POA中,因为AP=,AO=1,所以OP=1,
在Rt△PBO中,tan∠PBO=
所以异面直线PB与CD所成的角是.
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为.
设QD=x,则,由(Ⅱ)得CD=OB=,
在Rt△POC中,
所以PC=CD=DP,
由Vp-DQC=VQ-PCD,得2,所以存在点Q满足题意,此时.
解法二:
(Ⅰ)同解法一.
(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
广东卷20.(本小题满分14分)
如图5所示,四棱锥的底面是半径为的圆的内接四边形,其中是圆的直径,,,垂直底面,,分别是上的点,且,过点作的平行线交于.
(1)求与平面所成角的正弦值;(2)证明:是直角三角形;
(3)当时,求的面积.
【解析】(1)在中,,
而PD垂直底面ABCD,
,
在中,,即为以为直角的直角三角形。
设点到面的距离为,由有,即
;
(2),而,即,,
,是直角三角形;
(3)时,,
即,
的面积
浙江卷(18)(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为?
本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分.
方法一:
(Ⅰ)证明:过点作交于,连结,
可得四边形为矩形,
又为矩形,
所以,从而四边形为平行四边形,
故.
因为平面,平面,
所以平面.
(Ⅱ)解:过点作交的延长线于,连结.
由平面平面,,得
平面,
从而.
所以为二面角的平面角.
在中,因为,,所以,.
又因为,所以,
从而.
于是.
因为,
所以当为时,二面角的大小为.
方法二:如图,以点为坐标原点,以和分别作为轴,轴和轴,建立空间直角坐标系.
设,
则,,,,.
(Ⅰ)证明:,,,
所以,,从而,,
所以平面.
因为平面,
所以平面平面.
故平面.
(Ⅱ)解:因为,,
所以,,从而
解得.
所以,.
设与平面垂直,
则,,
解得.
又因为平面,,
所以,
得到.
所以当为时,二面角的大小为.
辽宁卷19.(本小题满分12分)
如图,在棱长为1的正方体中,AP=BQ=b(0
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,
并求出这个值;
(Ⅲ)若与平面PQEF所成的角为,求与平
面PQGH所成角的正弦值.
19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.
解法一:
(Ⅰ)证明:在正方体中,,,又由已知可得
,,,
所以,,
所以平面.
所以平面和平面互相垂直. 4分
(Ⅱ)证明:由(Ⅰ)知
,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面积之和是
,是定值. 8分
(III)解:连结BC′交EQ于点M.
因为,,
所以平面和平面PQGH互相平行,因此与平面PQGH所成角与与平面所成角相等.
与(Ⅰ)同理可证EQ⊥平面PQGH,可知EM⊥平面,因此EM与的比值就是所求的正弦值.
设交PF于点N,连结EN,由知
.
因为⊥平面PQEF,又已知与平面PQEF成角,
所以,即,
解得,可知E为BC中点.
所以EM=,又,
故与平面PQCH所成角的正弦值为. 12分
解法二:
以D为原点,射线DA,DC,DD′分别为x,y,z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得,故
,,,,
,,,
,,.
(Ⅰ)证明:在所建立的坐标系中,可得
,
,
.
因为,所以是平面PQEF的法向量.
因为,所以是平面PQGH的法向量.
因为,所以,
所以平面PQEF和平面PQGH互相垂直. 4分
(Ⅱ)证明:因为,所以,又,所以PQEF为矩形,同理PQGH为矩形.
在所建立的坐标系中可求得,,
所以,又,
所以截面PQEF和截面PQGH面积之和为,是定值. 8分
(Ⅲ)解:由已知得与成角,又可得
,
即,解得.
所以,又,所以与平面PQGH所成角的正弦值为
. 12分
A
B
C
D
M
N
P
A1
B1
C1
D1
y
x
A.
O
y
x
B.
O
y
x
C.
O
y
x
D.
O
A
B
a
b
l
E
F
D
I
A
H
G
B
C
E
F
D
A
B
C
侧视
图1
图2
B
E
A.
B
E
B.
B
E
C.
B
E
D.
C
D
E
A
B
18题图
A
B
C
D
E
A1
B1
C1
D1
A
B
C
D
E
A1
B1
C1
D1
F
H
G
A
B
C
D
E
A1
B1
C1
D1
y
x
z
A
C
B
P
A
C
B
D
P
A
C
B
E
P
A
C
B
D
P
H
A
C
B
P
z
x
y
H
E
A1
A
C1
B1
B
D
C
A1
A
C1
B1
B
D
C
F
E
(第19题,解法一)
A1
A
C1
B1
B
D
C
z
y
x
(第19题,解法二)
F
C
P
G
E
A
B
图5
D
D
A
B
E
F
C
H
G
D
A
B
E
F
C
y
z
x
A
B
C
D
E
F
P
Q
H
G
A
B
C
D
E
F
P
Q
H
G
N
M
A
B
C
D
E
F
P
Q
H
y
x
z
G
PAGE
272008年高考数学试题分类汇编
不等式
选择题:
1.(天津卷8)已知函数,则不等式的解集是A
(A) (B) (C) (D)
2.(江西卷9)若,则下列代数式中值最大的是A
A. B. C. D.
3.(陕西卷6)“”是“对任意的正数,”的( A )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.(浙江卷3)已知,b都是实数,那么“”是“>b”的D
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
5.(海南卷6)已知,则使得都成立的取值范围是( B )
A.(0,) B. (0,)
C. (0,) D. (0,)
填空题:
1.(上海卷1 ( http: / / www. ))不等式的解集是 .(0,2)
2.(山东卷16)若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则b的取值范围 。(5,7).
3.(江苏卷11)已知,,则的最小值 .3
4.(江西卷14)不等式的解集为 .
5.(广东卷14)(不等式选讲选做题)已知,若关于的方程有实根,则的取值范围是 .
PAGE
22008年高考数学试题分类汇编
平面向量
选择题:
1.(全国一3)在中,,.若点满足,则( A )
A. B. C. D.
2.(安徽卷3).在平行四边形ABCD中,AC为一条对角线,若,,则( B )
A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
3.(湖北卷1)设,,则C
A. B. C. D.
4.(湖南卷7)设D 、E、F分别是△ABC的三边BC、CA、AB上的点,且
则与( A )
A.反向平行 B.同向平行
C.互相垂直 D.既不平行也不垂直
5.(陕西卷3 ( http: / / www. ))的内角的对边分别为,若,则等于( D )
A. B.2 C. D.
6.(陕西卷15 ( http: / / www. ))关于平面向量.有下列三个命题:
①若,则.②若,,则.
③非零向量和满足,则与的夹角为.
其中真命题的序号为 .(写出所有真命题的序号)②
7.(重庆卷7)若过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段所成的比的值为A
(A)- (B) - (C) (D)
8.(福建卷10)在△ABC中,角ABC的对边分别为a、b、c,若(a2+c2-b2)tanB=,则角B的值为D
A. B. C.或 D. 或
9.(广东卷4)若变量满足则的最大值是( C )
A.90 B.80 C.70 D.40
10.(广东卷8)在平行四边形中,与交于点是线段的中点,的延长线与交于点.若,,则( B )
A. B. C. D.
11.(浙江卷9)已知,b是平面内两个互相垂直的单位向量,若向量满足,则的最大值是C
(A)1 (B)2 (C) (D)
12.(辽宁卷5)已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则( A )
A. B. C. D.
13.(辽宁卷8)将函数的图象按向量平移得到函数的图象,则( A )
A. B. C. D.
14.(海南卷3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的
余弦值为( D )
A. 5/18 B. 3/4 C. /2 D. 7/8
15.(海南卷8)平面向量,共线的充要条件是( D )
A. ,方向相同 B. ,两向量中至少有一个为零向量
C. , D. 存在不全为零的实数,,
填空题:
1.(上海卷5 ( http: / / www. ))若向量,满足且与的夹角为,则 .
2.(全国二13 ( http: / / www. ))设向量 ( http: / / www. ),若向量与向量共线,则 .2
3.(北京卷10)已知向量与的夹角为,且,那么的值为 0 .
4.(天津卷14)已知平面向量,.若,则_____________.
5.(江苏卷5),的夹角为,, 则 ▲ .7
6.(江苏卷13)若AB=2, AC=BC ,则的最大值 ▲ .
7.(江西卷13)直角坐标平面上三点,若为线段的三等分点,则= .22
8.(湖北卷12)在△中,三个角的对边边长分别为,则的值为 .
9.(浙江卷11)已知>0,若平面内三点A(1,-),B(2,),C(3,)共线,则=________。
10.(浙江卷13)在△ABC中,角A、B、C所对的边分别为、b、c ,若,则_________________。
11.(海南卷13)已知向量,,且,则= _____3
解答题:
1.(湖南卷19)(本小题满分13分)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断
它是否会进入警戒水域,并说明理由.
解: (I)如图,AB=40,AC=10,
由于,所以cos=
由余弦定理得BC=
所以船的行驶速度为(海里/小时).
(II)解法一 如图所示,以A为原点建立平面直角坐标系,
设点B、C的坐标分别是B(x1,y2), C(x1,y2),
BC与x轴的交点为D.
由题设有,x1=y1= AB=40,
x2=ACcos,
y2=ACsin
所以过点B、C的直线l的斜率k=,直线l的方程为y=2x-40.
又点E(0,-55)到直线l的距离d=
所以船会进入警戒水域.
解法二: 如图所示,设直线AE与BC的延长线相交于点Q.
在△ABC中,由余弦定理得,
==.
从而
在中,由正弦定理得,
AQ=
由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.
过点E作EP BC于点P,则EP为点E到直线BC的距离.
在Rt中,PE=QE·sin
=
所以船会进入警戒水域.
PAGE
52008年高考数学试题分类汇编
算法与极限
选择题:
1.(广东卷9.阅读图3的程序框图,若输入,,则输出 12 , 3(注:框图中的赋值符号“”也可以写成“”或“”)
【解析】要结束程序的运算,就必须通过整除的条件运算,而同时也整除,那么的最小值应为和的最小公倍数12,即此时有。
2.(海南卷5、右面的程序框图5,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A )
A. c > x B. x > c C. c > b D. b > c
3.(辽宁卷2)
( B )
A. B. C.1 D.2
4.(陕西卷12)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为(),传输信息为,其中,运算规则为:,,,,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )
A.11010 B.01100 C.10111 D.00011
填空题:
1.(湖南卷11).
2.(江西卷11).
3.(山东卷13)执行右边的程序框图6,若p=0.8,则输出的n= 4 .
4.(陕西卷13 ( http: / / www. )),则 .1
5.(重庆卷12)已知函数f(x)=(当x0时) ,点在x=0处连续,则 .
是
否
开始
输入a,b,c
x=a
b>x
输出x
结束
x=b
x=c
否
是
图5
开始
n整除a
是
输入
结束
输出
图3
否
图6
PAGE
22008年高考数学试题分类汇编
概率与统计
选择题:
1.(安徽卷10).设两个正态分布和的密度函数图像如图所示。则有( A )
A.
B.
C.
D.
2.(山东卷7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为B
(A) (B)
(C) (D)
3.(山东卷8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为
(A)304.6 (B)303.6 (C)302.6 (D)301.6
4.(江西卷11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为C
A. B. C. D.
5.(湖南卷4)设随机变量服从正态分布,若,则c= ( B )
A.1 B.2 C.3 D.4
6.(重庆卷5)已知随机变量服从正态分布N(3,a2),则P(=D
(A) (B) (C) (D)
7.(福建卷5)某一批花生种子,如果每1粒发牙的概率为,那么播下4粒种子恰有2粒发芽的概率是B
A. B. C. D.
8.(广东卷2)记等差数列的前项和为,若,,则( D )
A.16 B.24 C.36 D.48
9.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )
A. B. C. D.
填空题:
1.(天津卷11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.10
2.(上海卷7)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示)
3.(上海卷9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是 10.5和10.5;
4.(江苏卷2)一个骰子连续投2 次,点数和为4 的概率 .
5.(江苏卷6)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 .
6.(湖南卷15)对有n(n≥4)个元素的总体进行抽样,先将总体分成两个子总体和 (m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用表示元素i和j同时出现在样本中的概率,则= ; 所有 (1≤i<j≤的和等于 . ,6
解答题:
1.(全国一20).(本小题满分12分)
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)表示依方案乙所需化验次数,求的期望.
解:(Ⅰ)对于甲:
次数 1 2 3 4 5
概率 0.2 0.2 0.2 0.2 0.2
对于乙:
次数 2 3 4
概率 0.4 0.4 0.2
.
(Ⅱ)表示依方案乙所需化验次数,的期望为.
2.(全国二18).(本小题满分12分)
购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为.
(Ⅰ)求一投保人在一年度内出险的概率;
(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
解:
各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为,
则.
(Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当, 2分
,
又,
故. 5分
(Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和.
支出 ,
盈利 ,
盈利的期望为 , 9分
由知,,
.
(元).
故每位投保人应交纳的最低保费为15元. 12分
3.(北京卷17).(本小题共13分)
甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么,
即甲、乙两人同时参加岗位服务的概率是.
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么,
所以,甲、乙两人不在同一岗位服务的概率是.
(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,
则.
所以,的分布列是
1 3
4.(四川卷18).(本小题满分12分)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
【解】:记表示事件:进入商场的1位顾客购买甲种商品,
记表示事件:进入商场的1位顾客购买乙种商品,
记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,
(Ⅰ)
(Ⅱ)
(Ⅲ),故的分布列
所以
5.(天津卷18)(本小题满分12分)
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
解:本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.
(Ⅰ)解法一:设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.
由题意得
解得或(舍去),所以乙投球的命中率为.
解法二:设设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B.
由题意得,于是或(舍去),故.
所以乙投球的命中率为.
(Ⅱ)解法一:由题设和(Ⅰ)知.
故甲投球2次至少命中1次的概率为
解法二:
由题设和(Ⅰ)知
故甲投球2次至少命中1次的概率为
(Ⅲ)由题设和(Ⅰ)知,
甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次。概率分别为
,
,
所以甲、乙两人各投两次,共命中2次的概率为.
6.(安徽卷19).(本小题满分12分)
为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。
(Ⅰ)求n,p的值并写出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率
解:(1)由得,
从而
的分布列为
0 1 2 3 4 5 6
(2)记”需要补种沙柳”为事件A, 则 得
或
7.(山东卷18)(本小题满分12分)
甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,
答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分.
(Ⅰ)求随机变量ε分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且
所以ε的分布列为
ε 0 1 2 3
P
ε的数学期望为
Eε=
解法二:根据题设可知
因此ε的分布列为
(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C、D互斥,又
由互斥事件的概率公式得
解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故事
P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).
=
8.(江西卷18).(本小题满分12分)
某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5; 第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1).写出的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?
解:(1)的所有取值为
的所有取值为,
、的分布列分别为:
0.8 0.9 1.0 1.125 1.25
P 0.2 0.15 0.35 0.15 0.15
0.8 0.96 1.0 1.2 1.44
P 0.3 0.2 0.18 0.24 0.08
(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,
,
可见,方案二两年后柑桔产量超过灾前产量的概率更大
(3)令表示方案所带来的效益,则
10 15 20
P 0.35 0.35 0.3
10 15 20
P 0.5 0.18 0.32
所以
可见,方案一所带来的平均效益更大。
9.(湖北卷17).(本小题满分12分)
袋中有20个大小相同的球,其中记上0号的有10个,记上号的有个(=1,2,3,4).现从袋中任取一球.表示所取球的标号.
(Ⅰ)求的分布列,期望和方差;
(Ⅱ)若, ,,试求a,b的值.
解:本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)
解:(Ⅰ)的分布列为:
0 1 2 3 4
P
∴
(Ⅱ)由,得a2×2.75=11,即又所以
当a=2时,由1=2×1.5+b,得b=-2;
当a=-2时,由1=-2×1.5+b,得b=4.
∴或即为所求.
10.(湖南卷16).(本小题满分12分)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试
合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:
(Ⅰ)至少有1人面试合格的概率;
(Ⅱ)签约人数的分布列和数学期望.
解: 用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,
且P(A)=P(B)=P(C)=.
(Ⅰ)至少有1人面试合格的概率是
(Ⅱ)的可能取值为0,1,2,3.
=
=
=
=
所以, 的分布列是
0 1 2 3
P
的期望
11.(陕西卷18).(本小题满分12分)
某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.
解:(Ⅰ)设该射手第次击中目标的事件为,则,
.
(Ⅱ)可能取的值为0,1,2,3.
的分布列为
0 1 2 3
0.008 0.032 0.16 0.8
.
12.(重庆卷18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(Ⅰ) 打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数的分别列与期望E.
解:令分别表示甲、乙、丙在第k局中获胜.
(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比
赛还未停止的概率为
(Ⅱ)的所有可能值为2,3,4,5,6,且
故有分布列
2 3 4 5 6
P
从而(局).
13.(福建卷20)(本小题满分12分)
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科
目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证
书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试
成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.
本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满分12分.
解:设“科目A第一次考试合格”为事件A,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B,“科目B补考合格”为事件B.
(Ⅰ)不需要补考就获得证书的事件为A1·B1,注意到A1与B1相互独立,
则.
答:该考生不需要补考就获得证书的概率为.
(Ⅱ)由已知得,=2,3,4,注意到各事件之间的独立性与互斥性,可得
故
答:该考生参加考试次数的数学期望为.
14.(广东卷17).(本小题满分13分)
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.
(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
【解析】的所有可能取值有6,2,1,-2;,
,
故的分布列为:
6 2 1 -2
0.63 0.25 0.1 0.02
(2)
(3)设技术革新后的三等品率为,则此时1件产品的平均利润为
依题意,,即,解得 所以三等品率最多为
15.(浙江卷19)(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分.
(Ⅰ)解:(i)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球的个数为,则,
得到.
故白球有5个.
(ii)随机变量的取值为0,1,2,3,分布列是
0 1 2 3
的数学期望
.
(Ⅱ)证明:设袋中有个球,其中个黑球,由题意得,
所以,,故.
记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则
.
所以白球的个数比黑球多,白球个数多于,红球的个数少于.
故袋中红球个数最少.
16.(辽宁卷18).(本小题满分12分)
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 2 3 4
频数 20 50 30
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.
解:本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.
解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. 3分
(Ⅱ)的可能值为8,10,12,14,16,且
P(=8)=0.22=0.04,
P(=10)=2×0.2×0.5=0.2,
P(=12)=0.52+2×0.2×0.3=0.37,
P(=14)=2×0.5×0.3=0.3,
P(=16)=0.32=0.09.
的分布列为
8 10 12 14 16
P 0.04 0.2 0.37 0.3 0.09
9分
=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) 12分
PAGE
12008年高考数学试题分类汇编
数列
选择题:
1.(全国一5)已知等差数列满足,,则它的前10项的和( C )
A.138 B.135 C.95 D.23
2.(上海卷14) 若数列{an}是首项为1,公比为a-的无穷等比数列,且{an}各项的和为a,则a的值是(B )
A.1 B.2 C. D.
3.(北京卷6)已知数列对任意的满足,且,那么等于( C )
A. B. C. D.
4.(四川卷7)已知等比数列中,则其前3项的和的取值范围是(D )
(A) (B)
(C) (D)
5.(天津卷4)若等差数列的前5项和,且,则B
(A)12 (B)13 (C)14 (D)15
6.(江西卷5)在数列中,, ,则 A
A. B. C. D.
7.(陕西卷4)已知是等差数列,,,则该数列前10项和等于( B )
A.64 B.100 C.110 D.120
8.(福建卷3)设{an}是公比为正数的等比数列,若n1=7,a5=16,则数列{an}前7项的和为C
A.63 B.64 C.127 D.128
9.(广东卷2)记等差数列的前项和为,若,,则( D )
A.16 B.24 C.36 D.48
10.(浙江卷6)已知是等比数列,,则=C
(A)16() (B)16()
(C)() (D)()
11.(海南卷4)设等比数列的公比,前n项和为,则( C )
A. 2 B. 4 C. D.
填空题:
1.(四川卷16)设等差数列的前项和为,若,则的最大值为___________。
安徽卷(14)在数列在中,,,,其中为常数,则的值是 1
2.(江苏卷10)将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
. . . . . . .
按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 .
3.(湖北卷14)已知函数,等差数列的公差为.若,则 .-6
4.(湖北卷15)观察下列等式:
……………………………………
可以推测,当≥2()时,
.,0
5.(重庆卷14)设Sn=是等差数列{an}的前n项和,a12=-8,S9=-9,则S16= .-72
解答题:
1.(全国一22).(本小题满分12分)
(注意:在试题卷上作答无效)
设函数.数列满足,.
(Ⅰ)证明:函数在区间是增函数;
(Ⅱ)证明:;
(Ⅲ)设,整数.证明:.
解析:
(Ⅰ)证明:,
故函数在区间(0,1)上是增函数;
(Ⅱ)证明:(用数学归纳法)(i)当n=1时,,,
由函数在区间是增函数,且函数在处连续,则在区间是增函数,,即成立;
(ⅱ)假设当时,成立,即
那么当时,由在区间是增函数,得
.而,则,
,也就是说当时,也成立;
根据(ⅰ)、(ⅱ)可得对任意的正整数,恒成立.
(Ⅲ)证明:由.可得
若存在某满足,则由⑵知:
若对任意都有,则
,即成立.
2.(全国二20).(本小题满分12分)
设数列的前项和为.已知,,.
(Ⅰ)设,求数列的通项公式;
(Ⅱ)若,,求的取值范围.
解:
(Ⅰ)依题意,,即,
由此得. 4分
因此,所求通项公式为
,.① 6分
(Ⅱ)由①知,,
于是,当时,
,
,
当时,
.
又.
综上,所求的的取值范围是. 12分
3.(四川卷20).(本小题满分12分)
设数列的前项和为,已知
(Ⅰ)证明:当时,是等比数列;
(Ⅱ)求的通项公式
【解】:由题意知,且
两式相减得
即 ①
(Ⅰ)当时,由①知
于是
又,所以是首项为1,公比为2的等比数列。
(Ⅱ)当时,由(Ⅰ)知,即
当时,由由①得
因此
得
4.(天津卷20)(本小题满分12分)
在数列中,,,且().
(Ⅰ)设(),证明是等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.
本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分.
(Ⅰ)证明:由题设(),得
,即,.
又,,所以是首项为1,公比为的等比数列.
(Ⅱ)解法:由(Ⅰ)
,
,
……
,().
将以上各式相加,得().
所以当时,
上式对显然成立.
(Ⅲ)解:由(Ⅱ),当时,显然不是与的等差中项,故.
由可得,由得, ①
整理得,解得或(舍去).于是.
另一方面,,
.
由①可得,.
所以对任意的,是与的等差中项.
5.(安徽卷21).(本小题满分13分)
设数列满足为实数
(Ⅰ)证明:对任意成立的充分必要条件是;
(Ⅱ)设,证明:;
(Ⅲ)设,证明:
解 (1) 必要性 : ,
又 ,即
充分性 :设 ,对用数学归纳法证明
当时,.假设
则,且
,由数学归纳法知对所有成立
(2) 设 ,当时,,结论成立
当 时,
,由(1)知,所以 且
(3) 设 ,当时,,结论成立
当时,由(2)知
6.(山东卷19)。(本小题满分12分)
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:
a1
a2 a3
a4 a5 a6
a7 a8 a9 a10
……
记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1. Sn为数列{bn}的前n项和,且满足=1=(n≥2).
(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项和的和.
(Ⅰ)证明:由已知,
(Ⅱ)解:设上表中从第三行起,每行的公比都为q,且q>0.
因为
所以表中第1行至第12行共含有数列{an}的前78项,
故 a82在表中第13行第三列,
因此
又
所以 q=2.
记表中第k(k≥3)行所有项的和为S,
则(k≥3).
7.(江苏卷19).(Ⅰ)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当n =4时,求的数值;②求的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.
【解析】本小题主要考查等差数列与等比数列的综合运用.
(Ⅰ)①当n=4 时,中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.
若删去,则有即
化简得=0,因为≠0,所以=4 ;
若删去,则有,即,故得=1.
综上=1或-4.
②当n=5 时, 中同样不可能删去首项或末项.
若删去,则有=,即.故得=6 ;
若删去,则=,即.
化简得3=0,因为d≠0,所以也不能删去;
若删去,则有=,即.故得= 2 .
当n≥6 时,不存在这样的等差数列.事实上,在数列,,,…,,, 中,
由于不能删去首项或末项,若删去,则必有=,这与d≠0 矛盾;同样若删
去也有=,这与d≠0 矛盾;若删去,…, 中任意一个,则必有
=,这与d≠0 矛盾.
综上所述,n∈{4,5}.
(Ⅱ)略
8.(江西卷19).(本小题满分12分)
数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.
(1)求;
(2)求证.
解:(1)设的公差为,的公比为,则为正整数,
,
依题意有①
由知为正有理数,故为的因子之一,
解①得
故
(2)
∴
9.(湖北卷21).(本小题满分14分)
已知数列和满足:,其中为实数,为正整数.
(Ⅰ)对任意实数,证明数列不是等比数列;
(Ⅱ)试判断数列是否为等比数列,并证明你的结论;
(Ⅲ)设,为数列的前项和.是否存在实数,使得对任意正整数,都有
若存在,求的取值范围;若不存在,说明理由.
本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)
(Ⅰ)证明:假设存在一个实数λ,使{an}是等比数列,则有a22=a1a3,即
矛盾.
所以{an}不是等比数列.
(Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)
=(-1)n·(an-3n+21)=-bn
又b1x-(λ+18),所以
当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列:
当λ≠-18时,b1=(λ+18) ≠0,由上可知bn≠0,∴(n∈N+).
故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列.
(Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求.
∴λ≠-18,故知bn= -(λ+18)·(-)n-1,于是可得
Sn=-
要使a即a<-(λ+18)·[1-(-)n]〈b(n∈N+)
①
当n为正奇数时,1∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)= ,
于是,由①式得a<-(λ+18),<
当a当b>3a存在实数λ,使得对任意正整数n,都有a10.(湖南卷18).(本小题满分12分)
数列
(Ⅰ)求并求数列的通项公式;
(Ⅱ)设证明:当
解: (Ⅰ)因为所以
一般地,当时,
=,即
所以数列是首项为1、公差为1的等差数列,因此
当时,
所以数列是首项为2、公比为2的等比数列,因此
故数列的通项公式为
(Ⅱ)由(Ⅰ)知, ①
②
①-②得,
所以
要证明当时,成立,只需证明当时,成立.
证法一
(1)当n = 6时,成立.
(2)假设当时不等式成立,即
则当n=k+1时,
由(1)、(2)所述,当n≥6时,.即当n≥6时,
证法二
令,则
所以当时,.因此当时,
于是当时,
综上所述,当时,
11.(陕西卷22).(本小题满分14分)
已知数列的首项,,.
(Ⅰ)求的通项公式;
(Ⅱ)证明:对任意的,,;
(Ⅲ)证明:.
解法一:(Ⅰ),,,
又,是以为首项,为公比的等比数列.
,.
(Ⅱ)由(Ⅰ)知,
,原不等式成立.
(Ⅲ)由(Ⅱ)知,对任意的,有
.
取,
则.
原不等式成立.
解法二:(Ⅰ)同解法一.
(Ⅱ)设,
则
,
当时,;当时,,
当时,取得最大值.
原不等式成立.
(Ⅲ)同解法一.
12.(重庆卷22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
设各项均为正数的数列{an}满足.
(Ⅰ)若,求a3,a4,并猜想a2cos的值(不需证明);
(Ⅱ)记对n≥2恒成立,求a2的值及数列{bn}的通项公式.
解:(Ⅰ)因
由此有,故猜想的通项为
(Ⅱ)令
由题设知x1=1且
①
②
因②式对n=2成立,有
③
下用反证法证明:
由①得
因此数列是首项为,公比为的等比数列.故
④
又由①知
因此是是首项为,公比为-2的等比数列,所以
⑤
由④-⑤得
⑥
对n求和得
⑦
由题设知
即不等式22k+1<
对kN*恒成立.但这是不可能的,矛盾.
因此x2≤,结合③式知x2=,因此a2=2*2=
将x2=代入⑦式得
Sn=2-(nN*),
所以bn=2Sn=22-(nN*)
13.(广东卷21).(本小题满分12分)
设为实数,是方程的两个实根,数列满足,,(…).(1)证明:,;(2)求数列的通项公式;
(3)若,,求的前项和.
【解析】(1)由求根公式,不妨设,得
,
(2)设,则,由得,
消去,得,是方程的根,由题意可知,
①当时,此时方程组的解记为
即、分别是公比为、的等比数列,
由等比数列性质可得,,
两式相减,得
,,
,
,即,
②当时,即方程有重根,,
即,得,不妨设,由①可知
,,
即,等式两边同时除以,得,即
数列是以1为公差的等差数列,,
综上所述,
(3)把,代入,得,解得
14.(浙江卷22)(本题14分)
已知数列,,,.记..
求证:当时,
(Ⅰ);
(Ⅱ);
(Ⅲ)。
本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.满分14分.
(Ⅰ)证明:用数学归纳法证明.
①当时,因为是方程的正根,所以.
②假设当时,,
因为
,
所以.
即当时,也成立.
根据①和②,可知对任何都成立.
(Ⅱ)证明:由,(),
得.
因为,所以.
由及得, 所以.
(Ⅲ)证明:由,得
所以,
于是,
故当时,,
又因为, 所以.
15.(辽宁卷21).(本小题满分12分)
在数列,中,a1=2,b1=4,且成等差数列,成等比数列()
(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测,的通项公式,并证明你的结论;
(Ⅱ)证明:.
本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.满分12分.
解:(Ⅰ)由条件得
由此可得
. 2分
猜测. 4分
用数学归纳法证明:
①当n=1时,由上可得结论成立.
②假设当n=k时,结论成立,即
,
那么当n=k+1时,
.
所以当n=k+1时,结论也成立.
由①②,可知对一切正整数都成立. 7分
(Ⅱ).
n≥2时,由(Ⅰ)知. 9分
故
综上,原不等式成立. 12分
PAGE
12008年高考数学试题分类汇编
圆锥曲线
选择题:
1.(福建卷11)又曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为B
A.(1,3) B. C.(3,+) D.
2.(海南卷11)已知点P在抛物线y2 = 4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( A )
A. (,-1) B. (,1) C. (1,2) D. (1,-2)
3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点轨进入以月球球心为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在点第三次变轨进入以为圆心的圆形轨道Ⅲ绕月飞行,若用和分别表示椭轨道Ⅰ和Ⅱ的焦距,用和分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:
①; ②; ③; ④<.
其中正确式子的序号是B
A. ①③ B. ②③ C. ①④ D. ②④
4.(湖南卷8)若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B )
A.(1,2) B.(2,+) C.(1,5) D. (5,+)
5.(江西卷7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是C
A. B. C. D.
6.(辽宁卷10)已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( A )
A. B. C. D.
7.(全国二9 ( http: / / www. ))设,则双曲线的离心率的取值范围是( B )
A. B. C. D.
8.(山东卷(10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为A
(A) (B)
(C) (D)
9.(陕西卷8)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( B )
A. B. C. D.
10.(四川卷12)已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为( B )
(A) (B) (C) (D)
11.(天津卷(7)设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为B
(A) (B) (C) (D)
12.(浙江卷7)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D
(A)3 (B)5 (C) (D)
13.(浙江卷10)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是B
(A)圆 (B)椭圆
(C)一条直线 (D)两条平行直线
14.(重庆卷(8)已知双曲线(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=,则双曲线方程为C
(A)-=1 (B)
(C) (D)
填空题:
1.(海南卷14)过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为_______
2.(湖南卷12)已知椭圆(a>b>0)的右焦点为F,右准线为,离心率e=过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于 .
3.(江苏卷12)在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= .
4.(江西卷15)过抛物线的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则 .
5.(全国一14)已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .2
6.(全国一15)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
7.(全国二15 ( http: / / www. ))已知是抛物线的焦点,过且斜率为1的直线交于两点.设,则与的比值等于 .
8.(浙江卷12)已知为椭圆的两个焦点,过的直线交椭圆于A、B两点若,则=______________。8
解答题:
1.(安徽卷22).(本小题满分13分)
设椭圆过点,且着焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上
解 (1)由题意:
,解得,所求椭圆方程为
(2)方法一
设点Q、A、B的坐标分别为。
由题设知均不为零,记,则且
又A,P,B,Q四点共线,从而
于是 ,
,
从而
,(1) ,(2)
又点A、B在椭圆C上,即
(1)+(2)×2并结合(3),(4)得
即点总在定直线上
方法二
设点,由题设,均不为零。
且
又 四点共线,可设,于是
(1)
(2)
由于在椭圆C上,将(1),(2)分别代入C的方程
整理得
(3)
(4)
(4)-(3) 得
即点总在定直线上
2.(北京卷19).(本小题共14分)
已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.
解:(Ⅰ)由题意得直线的方程为.
因为四边形为菱形,所以.
于是可设直线的方程为.
由得.
因为在椭圆上,
所以,解得.
设两点坐标分别为,
则,,,.
所以.
所以的中点坐标为.
由四边形为菱形可知,点在直线上,
所以,解得.
所以直线的方程为,即.
(Ⅱ)因为四边形为菱形,且,
所以.
所以菱形的面积.
由(Ⅰ)可得,
所以.
所以当时,菱形的面积取得最大值.
3.(福建卷21)(本小题满分12分)
如图、椭圆的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有,求a的取值范围.
本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.
解法一:(Ⅰ)设M,N为短轴的两个三等分点,
因为△MNF为正三角形,
所以,
即1=
因此,椭圆方程为
(Ⅱ)设
(ⅰ)当直线 AB与x轴重合时,
(ⅱ)当直线AB不与x轴重合时,
设直线AB的方程为:
整理得
所以
因为恒有,所以AOB恒为钝角.
即恒成立.
又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对mR恒成立,
即a2b2m2> a2 -a2b2+b2对mR恒成立.
当mR时,a2b2m2最小值为0,所以a2- a2b2+b2<0.
a2因为a>0,b>0,所以a0,
解得a>或a<(舍去),即a>,
综合(i)(ii),a的取值范围为(,+).
解法二:
(Ⅰ)同解法一,
(Ⅱ)解:(i)当直线l垂直于x轴时,
x=1代入=1.
因为恒有|OA|2+|OB|2<|AB|2,2(1+yA2)<4 yA2, yA2>1,即>1,
解得a>或a<(舍去),即a>.
(ii)当直线l不垂直于x轴时,设A(x1,y1), B(x2,y2).
设直线AB的方程为y=k(x-1)代入
得(b2+a2k2)x2-2a2k2x+ a2 k2- a2 b2=0,
故x1+x2=
因为恒有|OA|2+|OB|2<|AB|2,
所以x21+y21+ x22+ y22<( x2-x1)2+(y2-y1)2,
得x1x2+ y1y2<0恒成立.
x1x2+ y1y2= x1x2+k2(x1-1) (x2-1)=(1+k2) x1x2-k2(x1+x2)+ k2
=(1+k2).
由题意得(a2- a2 b2+b2)k2- a2 b2<0对kR恒成立.
①当a2- a2 b2+b2>0时,不合题意;
②当a2- a2 b2+b2=0时,a=;
③当a2- a2 b2+b2<0时,a2- a2(a2-1)+ (a2-1)<0,a4- 3a2 +1>0,
解得a2>或a2>(舍去),a>,因此a.
综合(i)(ii),a的取值范围为(,+).
4.(广东卷18).(本小题满分14分)
设,椭圆方程为,抛物线方程为.如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
【解析】(1)由得,
当得,G点的坐标为,,,过点G的切线方程为即,令得,点的坐标为,由椭圆方程得点的坐标为,
即,即椭圆和抛物线的方程分别为和;
(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,
同理 以为直角的只有一个。
若以为直角,设点坐标为,、两点的坐标分别为和,
。
关于的二次方程有一大于零的解,有两解,
即以为直角的有两个,
因此抛物线上存在四个点使得为直角三角形。
5.(湖北卷19).(本小题满分13分)
如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,,曲线是满足为定值的动点的轨迹,且曲线过点.
(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;
(Ⅱ)设过点的直线l与曲线相交于不同的两点、.
若△的面积不小于,求直线斜率的取值范围.
本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设实平轴长为a,虚半轴长为b,半焦距为c,
则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为.
解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设双曲线的方程为>0,b>0).
则由 解得a2=b2=2,
∴曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴
∴k∈(-,-1)∪(-1,1)∪(1,).
设E(x,y),F(x2,y2),则由①式得x1+x2=,于是
|EF|=
=
而原点O到直线l的距离d=,
∴S△DEF=
若△OEF面积不小于2,即S△OEF,则有
③
综合②、③知,直线l的斜率的取值范围为[-,-1]∪(1-,1) ∪(1, ).
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴
.∴k∈(-,-1)∪(-1,1)∪(1,).
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|= ③
当E、F在同一去上时(如图1所示),
S△OEF=
当E、F在不同支上时(如图2所示).
S△ODE=
综上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面积不小于2
④
综合②、④知,直线l的斜率的取值范围为[-,-1]∪(-1,1)∪(1,).
6.(湖南卷20).(本小题满分13分)
若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与
x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)
存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?
若存在,求其最大值(用x0表示):若不存在,请说明理由.
解: (I)设AB为点P(x0,0)的任意一条“相关弦”,且点A、B的坐标分别是
(x1,y1)、(x2,y2)(x1x2),则y21=4x1, y22=4x2,
两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1x2,所以y1+y20.
设直线AB的斜率是k,弦AB的中点是M(xm, ym),则
k=.从而AB的垂直平分线l的方程为
又点P(x0,0)在直线上,所以
而于是故点P(x0,0)的所有“相关弦”的中点的横坐标都是x0-2.
(Ⅱ)由(Ⅰ)知,弦AB所在直线的方程是,代入中,
整理得 (·)
则是方程(·)的两个实根,且
设点P的“相关弦”AB的弦长为l,则
因为0<<4xm=4(xm-2) =4x0-8,于是设t=,则t(0,4x0-8).
记l2=g(t)=-[t-2(x0-3)]2+4(x0-1)2.
若x0>3,则2(x0-3) (0, 4x0-8),所以当t=2(x0-3),即=2(x0-3)时,
l有最大值2(x0-1).
若2所以0综上所述,
当x0>3时,点P(x0,0)的“相关弦”的弦长中存在最大值,且最大值
为2(x0-1);当2< x03时,点P(x0,0)的“相关弦”的弦长中不存在最大值.
7.(江西卷21).(本小题满分12分)
设点在直线上,过点作双曲线的两条切线,切点为,定点.
(1)求证:三点共线。
(2)过点作直线的垂线,垂足为,试求的重心所在曲线方程.
证明:(1)设,由已知得到,且,,
设切线的方程为:由得
从而,解得
因此的方程为:
同理的方程为:
又在上,所以,
即点都在直线上
又也在直线上,所以三点共线
(2)垂线的方程为:,
由得垂足,
设重心
所以 解得
由 可得即为重心所在曲线方程
8.(辽宁卷20).(本小题满分12分)
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.
20.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.
解:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,
故曲线C的方程为. 3分
(Ⅱ)设,其坐标满足
消去y并整理得,
故. 5分
若,即.
而,
于是,
化简得,所以. 8分
(Ⅲ)
.
因为A在第一象限,故.由知,从而.又,
故,
即在题设条件下,恒有. 12分
9.(全国一21).(本小题满分12分)
(注意:在试题卷上作答无效)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
解:(Ⅰ)设,,
由勾股定理可得:
得:,,
由倍角公式,解得,则离心率.
(Ⅱ)过直线方程为,与双曲线方程联立
将,代入,化简有
将数值代入,有,解得
故所求的双曲线方程为。
10.(全国二21 ( http: / / www. )).(本小题满分12分)
设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.
(Ⅰ)解:依题设得椭圆的方程为,
直线的方程分别为,. 2分
如图,设,其中,
且满足方程,
故.①
由知,得;
由在上知,得.
所以,
化简得,
解得或. 6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,
. 9分
又,所以四边形的面积为
,
当,即当时,上式取等号.所以的最大值为. 12分
解法二:由题设,,.
设,,由①得,,
故四边形的面积为
9分
,
当时,上式取等号.所以的最大值为. 12分
11.(山东卷22) (本小题满分14分)
如图,设抛物线方程为x2=2py(p>0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
(Ⅰ)证明:由题意设
由得,则
所以
因此直线MA的方程为
直线MB的方程为
所以 ①
②
由①、②得
因此 ,即
所以A、M、B三点的横坐标成等差数列.
(Ⅱ)解:由(Ⅰ)知,当x0=2时,
将其代入①、②并整理得:
所以 x1、x2是方程的两根,
因此
又
所以
由弦长公式得
又,
所以p=1或p=2,
因此所求抛物线方程为或
(Ⅲ)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),
则CD的中点坐标为
设直线AB的方程为
由点Q在直线AB上,并注意到点也在直线AB上,
代入得
若D(x3,y3)在抛物线上,则
因此 x3=0或x3=2x0.
即D(0,0)或
(1)当x0=0时,则,此时,点M(0,-2p)适合题意.
(2)当,对于D(0,0),此时
又AB⊥CD,
所以
即矛盾.
对于因为此时直线CD平行于y轴,
又
所以 直线AB与直线CD不垂直,与题设矛盾,
所以时,不存在符合题意的M点.
综上所述,仅存在一点M(0,-2p)适合题意.
12.(陕西卷20).(本小题满分12分)
已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.
(Ⅰ)证明:抛物线在点处的切线与平行;
(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.
20.解法一:(Ⅰ)如图,设,,把代入得,
由韦达定理得,,
,点的坐标为.
设抛物线在点处的切线的方程为,
将代入上式得,
直线与抛物线相切,
,.
即.
(Ⅱ)假设存在实数,使,则,又是的中点,
.
由(Ⅰ)知
.
轴,.
又
.
,解得.
即存在,使.
解法二:(Ⅰ)如图,设,把代入得
.由韦达定理得.
,点的坐标为.,,
抛物线在点处的切线的斜率为,.
(Ⅱ)假设存在实数,使.
由(Ⅰ)知,则
,
,,解得.
即存在,使.
13.(四川卷21).(本小题满分12分)
设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,
(Ⅰ)若,求的值;
(Ⅱ)证明:当取最小值时,与共线。
【解】:由与,得
,的方程为
设
则
由得
①
(Ⅰ)由,得
②
③
由①、②、③三式,消去,并求得
故
(Ⅱ)
当且仅当或时,取最小值
此时,
故与共线。
【点评】:此题重点考察椭圆中的基本量的关系,进而求椭圆待定常数,考察向量的综合应用;
【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练地进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中的灵活应用。
14.(天津卷22)(本小题满分14分)
已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.
(22)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.
(Ⅰ)解:设双曲线的方程为().由题设得
,解得,所以双曲线方程为.
(Ⅱ)解:设直线的方程为().点,的坐标满足方程组
将①式代入②式,得,整理得.
此方程有两个一等实根,于是,且.整理得. ③
由根与系数的关系可知线段的中点坐标满足
,.
从而线段的垂直平分线方程为.
此直线与轴,轴的交点坐标分别为,.由题设可得.整理得,.
将上式代入③式得,整理得,.
解得或.
所以的取值范围是.
15.(浙江卷20)(本题15分)已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。
(Ⅰ)求曲线C的方程;
(Ⅱ)求出直线的方程,使得为常数。
本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.
(Ⅰ)解:设为上的点,则
,
到直线的距离为.
由题设得.
化简,得曲线的方程为.
(Ⅱ)解法一:
设,直线,则
,从而.
在中,因为
,
.
所以 .
,
.
当时,,
从而所求直线方程为.
解法二:设,直线,则,从而
.
过垂直于的直线.
因为,所以,
.
当时,,
从而所求直线方程为.
16.(重庆卷21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若,求点P的坐标.
解:(Ⅰ)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.
因此半焦距c=2,长半轴a=3,从而短半轴
b=,
所以椭圆的方程为
(Ⅱ)由得
①
因为不为椭圆长轴顶点,故P、M、N构成三角形.在△PMN中,
②
将①代入②,得
故点P在以M、N为焦点,实轴长为的双曲线上.
由(Ⅰ)知,点P的坐标又满足,所以
由方程组 解得
即P点坐标为
A
y
x
O
B
G
F
F1
图4
D
F
B
y
x
A
O
E
x
A
y
1
1
2
M
N
B
O
A
B
O
Q
y
x
l
M
A
B
O
Q
y
x
l
M
H
l1
PAGE
122008年高考数学试题分类汇编
集合简易逻辑
选择题:
1.(上海卷2)若集合,满足,则实数a= .2
2.(全国二1 ( http: / / www. ))设集合,( B )
A. B. C. D.
3.(北京卷1)已知全集,集合,,那么集合等于( D )
A. B.
C. D.
4.(四川卷1)设集合,则 ( B )
(A) (B) (C) (D)
5.(天津卷1)设集合,,,则A
(A) (B) (C) (D)
6.(安徽卷2).集合,则下列结论正确的是(D )
A. B.
C. D.
7.(山东卷1)满足M{a1, a2, a3, a4},且M∩{a1 ,a2, a3}={ a1·a2}的集合M的个数是B
(A)1 (B)2 (C)3 (D)4
8.(江西卷2)定义集合运算:设,,则集合的所有元素之和为D
A.0 B.2 C.3 D.6
9.(湖北卷2)若非空集合满足,且不是的子集,则B
A. “”是“”的充分条件但不是必要条件
B. “”是“”的必要条件但不是充分条件
C. “”是“”的充要条件
D. “”既不是“”的充分条件也不是“”必要条件
10.(湖南卷2)“成立”是“成立”的( B )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
11.(陕西卷2)已知全集,集合,,则集合中元素的个数为( B )
A.1 B.2 C.3 D.4
12.(重庆卷2)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的A
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分也不必要条件
13.(福建卷2)设集合A={x|},B={x|0<x<3=,那么“mA”是“mB”的A
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
14.(广东卷6)已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是( D )
A. B. C. D.
15.(浙江卷2)已知U=R,A=,B=,则(AD
(A) (B)
(C) (D)
16.(辽宁卷1)已知集合,则集合=( D )
A. B. C. D.
填空题:
1.(江苏卷4)A=,则A Z 的元素的个数 .0
2.(重庆卷11)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则= .
3.(福建卷16)设P是一个数集,且至少含有两个数,若对任意a、b∈R,都有a+b、a-b, ab、 ∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)③④
PAGE
12008年高考数学试题分类汇编
复数
一.选择题:
1.(全国一4)设,且为正实数,则( D )
A.2 B.1 C.0 D.
2.(全国二2)设且,若复数是实数,则( A )
A. B. C. D.
3.(四川卷)复数( A )
(A) (B) (C) (D)
4.(安徽卷1)复数 ( A )
A.2 B.-2 C. D.
5.(山东卷2)设z的共轭复数是,或z+=4,z·=8,则等于D
(A)1 (B)-i (C)±1 (D) ±i
6.(江西卷1)在复平面内,复数对应的点位于D
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.(湖北卷11)设(其中表示z1的共轭复数),已知z2的实部是,则z2的虚部为 .1
8.(湖南卷1)复数等于( D )
A.8 B.-8 C.8i D.-8i
9.(陕西卷1 ( http: / / www. ))复数等于( D )
A. B. C.1 D.
10.(重庆卷1)复数1+=A
(A)1+2i (B)1-2i (C)-1 (D)3
11.(福建卷1)若复数(a2-3a+2)+(a-1)i是纯虚数,则实数a的值为B
A.1 B.2 C.1或2 D.-1
12.(广东卷1)已知,复数的实部为,虚部为1,则的取值范围是( C )
A. B. C. D.
13.(浙江卷1)已知是实数,是春虚数,则=A
(A)1 (B)-1 (C) (D)-
14.(辽宁卷4)复数的虚部是( B )
A. B. C. D.
15.(海南卷2)已知复数,则( B )
A. 2 B. -2 C. 2i D. -2i
二.填空题:
1.(上海卷3 ( http: / / www. ))若复数z满足 (i是虚数单位),则z= .1+i
2.(北京卷9)已知,其中是虚数单位,那么实数 。 -1.
3.(江苏卷3)表示为,则= .1
PAGE
22008年高考数学试题分类汇编
排列组合二项式定理
选择题:
1.(上海卷12)组合数C(n>r≥1,n、r∈Z)恒等于( D )
A.C B.(n+1)(r+1)C C.nr C D.C
2.(全国一12)如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( B )
A.96 B.84 C.60 D.48
3.(全国二6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( D )
A. B. C. D.
4.(全国二7 ( http: / / www. ))的展开式中的系数是( B )
A. B. C.3 D.4
5.(安徽卷6)设则中奇数的个数为(A )
A.2 B.3 C.4 D.5
6.(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( C )
A. B. C. D.
7.(山东卷9)(x-)12展开式中的常数项为C
(A)-1320 (B)1320 (C)-220 (D)220
8.(江西卷8) 展开式中的常数项为 D
A.1 B.46 C.4245 D.4246
9.(湖北卷6)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为D
A. 540 B. 300 C. 180 D. 150
10.(陕西卷12)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为(),传输信息为,其中,运算规则为:,,,,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )
A.11010 B.01100 C.10111 D.00011
11.(福建卷7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A
A.14 B.24 C.28 D.48
12.(浙江卷4)在的展开式中,含的项的系数是A
(A)-15 (B)85 (C)-120 (D)274
13.(辽宁卷9)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( B )
A.24种 B.36种 C.48种 D.72种
14.(海南卷9)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有(A )
A. 20种 B. 30种 C. 40种 D. 60种
填空题
1.(北京卷11)若展开式的各项系数之和为32,则 5 ,其展开式中的常数项为 10 .(用数字作答)
2.(四川卷13)展开式中的系数为 _______________。
3.(陕西卷16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).96
4.(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).216
5.(天津卷12)的二项展开式中,的系数是________________(用数字作答).10
6.(天津卷16)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).432
7.(福建卷13)若(x-2)5=a3x5+a5x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.(用数字作答)31
8.(广东卷10)已知(是正整数)的展开式中,的系数小于120,
则 .1
9.(浙江卷16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)。40
10.(辽宁卷15)已知的展开式中没有常数项,,且2≤n≤8,则n=______.5
D
B
C
A
PAGE
32008年高考数学试题分类汇编
函数与导数
选择题:
1.(全国一1)函数的定义域为( C )
A. B.
C. D.
2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是( A )
3.(全国一6)若函数的图像与函数的图像关于直线对称,则( B )
A. B. C. D.
4.(全国一7)设曲线在点处的切线与直线垂直,则( D )
A.2 B. C. D.
5.(全国一9)设奇函数在上为增函数,且,则不等式的解集为( D )
A. B.
C. D.
6.(全国二3 ( http: / / www. ))函数的图像关于( C )
A.轴对称 B. 直线对称
C. 坐标原点对称 D. 直线对称
8.(全国二4)若,则( C )
A.<< B.<< C. << D. <<
9.(北京卷2)若,,,则( A )
A. B. C. D.
10.(北京卷3)“函数存在反函数”是“函数在上为增函数”的( B )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
11.(四川卷10)设,其中,则是偶函数的充要条件是( D )
(A) (B) (C) (D)
12.(四川卷11)设定义在上的函数满足,若,则( C )
(A) (B) (C) (D)
13.(天津卷3)函数()的反函数是A
(A)() (B)()
(C)() (D)()
14.(天津卷10)设,若对于任意的,都有满足方程,这时的取值集合为B
(A) (B) (C) (D)
15.(安徽卷7)是方程至少有一个负数根的( B )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
16.(安徽卷9)在同一平面直角坐标系中,函数的图象与的图象关于直线对称。而函数的图象与的图象关于轴对称,若,则的值是( B )
A. B. C. D.
17.(安徽卷11)若函数分别是上的奇函数、偶函数,且满足,则有( D )
A. B.
C. D.
18.(山东卷3)函数y=lncosx(-<x<的图象是A
19.(山东卷4)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为A
(A) 3 (B)2 (C)1 (D)-1
20.(江西卷3)若函数的值域是,则函数的值域是B
A. B. C. D.
21.(江西卷6)函数在区间内的图象是 D
22.(江西卷12)已知函数,,若对于任一实数,与至少有一个为正数,则实数的取值范围是B
A. B. C. D.
23.(湖北卷4)函数的定义域为D
A. B.
C. D.
24.(湖北卷7)若上是减函数,则的取值范围是C
A. B. C. D.
25.(湖北卷13)已知函数,,其中,为常数,则方程的解集为 .
26.(湖南卷10)设[x]表示不超过x的最大整数(如[2]=2, []=1),对于给定的nN*,定义x,则当x时,函数的值域是( D )
A. B.
C. D.
27.(陕西卷7 ( http: / / www. ))已知函数,是的反函数,若(),则的值为( A )
A. B.1 C.4 D.10
28.(陕西卷11 ( http: / / www. ))定义在上的函数满足(),,则等于( C )
A.2 B.3 C.6 D.9
29.(重庆卷4)已知函数y=的最大值为M,最小值为m,则的值为C
(A) (B) (C) (D)
30.(重庆卷6)若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,,则下列说法一定正确的是C
(A)f(x)为奇函数 (B)f(x)为偶函数
(C) f(x)+1为奇函数 (D)f(x)+1为偶函数
31.(福建卷4)函数f(x)=x3+sinx+1(xR),若f(a)=2,则f(-a)的值为B
A.3 B.0 C.-1 D.-2
32.(福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是D
33.(广东卷7)设,若函数,有大于零的极值点,则( B )
A. B. C. D.
34.(辽宁卷6)设P为曲线C:上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为( A )
A. B. C. D.
35.(辽宁卷12)设是连续的偶函数,且当x>0时是单调函数,则满足的所有x之和为( C )
A. B. C. D.
填空题:
1.(上海卷4)若函数f(x)的反函数为f -1(x)=x2(x>0),则f(4)= 2
2.(上海卷8)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是 (-1,0)∪(1,+∞)
3.(上海卷11)方程x2+x-1=0的解可视为函数y=x+的图像与函数y=的图像交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk (k≤4)所对应的点(xi ,)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 (-∞, -6)∪(6,+∞);
4.(全国二14)设曲线在点处的切线与直线垂直,则 .2
5.(北京卷12)如图,函数的图象是折线段,其中的坐标分别为,则 2 ; -2 .(用数字作答)
6.(北京卷13)已知函数,对于上的任意,有如下条件:①; ②; ③.其中能使恒成立的条件序号是 ② .
7.(北京卷14)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,,当时,
表示非负实数的整数部分,例如,.按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 .
8.(安徽卷13)函数的定义域为 .
9.(江苏卷8)直线是曲线的一条切线,则实数b= .ln2-1.
10.(江苏卷14)对于总有≥0 成立,则= .4
11.(湖南卷13)设函数存在反函数,且函数的图象过点(1,2),则函数的图象一定过点 . (-1,2)
12.(湖南卷14)已知函数
(1)若a>0,则的定义域是 ;
(2) 若在区间上是减函数,则实数a的取值范围是 .
13.(重庆卷13)已知(a>0) ,则 .3
14.(浙江卷15)已知t为常数,函数在区间[0,3]上的最大值为2,则t=___。1
15.(辽宁卷13)函数的反函数是__________.
解答题:
1.(全国一19).(本小题满分12分)
(注意:在试题卷上作答无效)
已知函数,.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)设函数在区间内是减函数,求的取值范围.
解:(1)求导:
当时,,,在上递增
当,求得两根为
即在递增,递减,
递增
(2),且解得:
2.(全国二22).(本小题满分12分)
设函数.
(Ⅰ)求的单调区间;
(Ⅱ)如果对任何,都有,求的取值范围.
解:
(Ⅰ). 2分
当()时,,即;
当()时,,即.
因此在每一个区间()是增函数,
在每一个区间()是减函数. 6分
(Ⅱ)令,则
.
故当时,.
又,所以当时,,即. 9分
当时,令,则.
故当时,.
因此在上单调增加.
故当时,,
即.
于是,当时,.
当时,有.
因此,的取值范围是. 12分
3.(北京卷18).(本小题共13分)
已知函数,求导函数,并确定的单调区间.
解:
.
令,得.
当,即时,的变化情况如下表:
0
当,即时,的变化情况如下表:
0
所以,当时,函数在上单调递减,在上单调递增,
在上单调递减.
当时,函数在上单调递减,在上单调递增,在上单调递减.
当,即时,,所以函数在上单调递减,在上单调递减.
4.(四川卷22).(本小题满分14分)
已知是函数的一个极值点。
(Ⅰ)求;
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数的图象有3个交点,求的取值范围。
【解】:(Ⅰ)因为
所以
因此
(Ⅱ)由(Ⅰ)知,
当时,
当时,
所以的单调增区间是
的单调减区间是
(Ⅲ)由(Ⅱ)知,在内单调增加,在内单调减少,在上单调增加,且当或时,
所以的极大值为,极小值为
因此
所以在的三个单调区间直线有的图象各有一个交点,当且仅当
因此,的取值范围为。
5.(天津卷21)(本小题满分14分)
已知函数(),其中.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在处有极值,求的取值范围;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
本小题主要考查利用导数研究函数的单调性、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力.满分14分.
(Ⅰ)解:.
当时,.
令,解得,,.
当变化时,,的变化情况如下表:
0 2
- 0 + 0 - 0 +
↘ 极小值 ↗ 极大值 ↘ 极小值 ↗
所以在,内是增函数,在,内是减函数.
(Ⅱ)解:,显然不是方程的根.
为使仅在处有极值,必须成立,即有.
解些不等式,得.这时,是唯一极值.
因此满足条件的的取值范围是.
(Ⅲ)解:由条件,可知,从而恒成立.
当时,;当时,.
因此函数在上的最大值是与两者中的较大者.
为使对任意的,不等式在上恒成立,当且仅当,即,在上恒成立.
所以,因此满足条件的的取值范围是.
6.(安徽卷20).(本小题满分12分)
设函数
(Ⅰ)求函数的单调区间;
(Ⅱ)已知对任意成立,求实数的取值范围。
解 (1) 若 则 列表如下
+ 0 - -
单调增 极大值 单调减 单调减
(2) 在 两边取对数, 得 ,由于所以
(1)
由(1)的结果可知,当时, ,
为使(1)式对所有成立,当且仅当,即
7.(山东卷21)(本小题满分12分)
已知函数其中n∈N*,a为常数.
(Ⅰ)当n=2时,求函数f(x)的极值;
(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.
(Ⅰ)解:由已知得函数f(x)的定义域为{x|x>1},
当n=2时,
所以
(1)当a>0时,由f(x)=0得
>1,<1,
此时 f′(x)=.
当x∈(1,x1)时,f′(x)<0,f(x)单调递减;
当x∈(x1+∞)时,f′(x)>0, f(x)单调递增.
(2)当a≤0时,f′(x)<0恒成立,所以f(x)无极值.
综上所述,n=2时,
当a>0时,f(x)在处取得极小值,极小值为
当a≤0时,f(x)无极值.
(Ⅱ)证法一:因为a=1,所以
当n为偶数时,
令
则 g′(x)=1+>0(x≥2).
所以当x∈[2,+∞]时,g(x)单调递增,
又 g(2)=0
因此≥g(2)=0恒成立,
所以f(x)≤x-1成立.
当n为奇数时,
要证≤x-1,由于<0,所以只需证ln(x-1) ≤x-1,
令 h(x)=x-1-ln(x-1),
则 h′(x)=1-≥0(x≥2),
所以 当x∈[2,+∞]时,单调递增,又h(2)=1>0,
所以当x≥2时,恒有h(x) >0,即ln(x-1)<x-1命题成立.
综上所述,结论成立.
证法二:当a=1时,
当x≤2,时,对任意的正整数n,恒有≤1,
故只需证明1+ln(x-1) ≤x-1.
令
则
当x≥2时,≥0,故h(x)在上单调递增,
因此 当x≥2时,h(x)≥h(2)=0,即1+ln(x-1) ≤x-1成立.
故 当x≥2时,有≤x-1.
即f(x)≤x-1.
8.(江苏卷17).某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为km.
(Ⅰ)按下列要求写出函数关系式:
①设∠BAO=(rad),将表示成的函数关系式;
②设OP(km) ,将表示成x的函数关系式.
(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
【解析】本小题主要考查函数最值的应用.
(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO=(rad) ,则, 故
,又OP=10-10ta,
所以,
所求函数关系式为
②若OP=(km) ,则OQ=10-,所以OA =OB=
所求函数关系式为
(Ⅱ)选择函数模型①,
令0 得sin ,因为,所以=,
当时, ,是的减函数;当时, ,是的增函数,所以当=时,。这时点P 位于线段AB 的中垂线上,且距离AB 边
km处。
9.(江苏卷20)若,,为常数,
且
(Ⅰ)求对所有实数成立的充要条件(用表示);
(Ⅱ)设为两实数,且,若
求证:在区间上的单调增区间的长度和为(闭区间的长度定义为).
【解析】本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.
(Ⅰ)恒成立
(*)
因为
所以,故只需(*)恒成立
综上所述,对所有实数成立的充要条件是:
(Ⅱ)1°如果,则的图象关于直线对称.因为,所以区间关于直线 对称.
因为减区间为,增区间为,所以单调增区间的长度和为
2°如果.
(1)当时.,
当,因为,所以,
故=
当,因为,所以
故=
因为,所以,所以即
当时,令,则,所以,
当时,,所以=
时,,所以=
在区间上的单调增区间的长度和
=
(2)当时.,
当,因为,所以,
故=
当,因为,所以
故=
因为,所以,所以
当时,令,则,所以,
当时, ,所以=
时,,所以=
在区间上的单调增区间的长度和
=
综上得在区间上的单调增区间的长度和为
10.(江西卷22).(本小题满分14分)
已知函数,.
.当时,求的单调区间;
.对任意正数,证明:.
解:、当时,,求得 ,
于是当时,;而当 时,.
即在中单调递增,而在中单调递减.
(2).对任意给定的,,由 ,
若令 ,则 … ① ,而 … ②
(一)、先证;因为,,,
又由 ,得 .
所以
.
(二)、再证;由①、②式中关于的对称性,不妨设.则
(ⅰ)、当,则,所以,因为 ,
,此时.
(ⅱ)、当 …③,由①得 ,,,
因为 所以 … ④
同理得 … ⑤ ,于是 … ⑥
今证明 … ⑦, 因为 ,
只要证 ,即 ,也即 ,据③,此为显然.
因此⑦得证.故由⑥得 .
综上所述,对任何正数,皆有.
11.(湖北卷20).(本小题满分12分)
水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取计算).
解:
水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取计算).
12.(湖南卷21)(本小题满分13分)
已知函数f(x)=ln2(1+x)-.
(I) 求函数的单调区间;
(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数).
求的最大值.
解: (Ⅰ)函数的定义域是,
设则
令则
当时, 在(-1,0)上为增函数,
当x>0时,在上为减函数.
所以h(x)在x=0处取得极大值,而h(0)=0,所以,
函数g(x)在上为减函数.
于是当时,
当x>0时,
所以,当时,在(-1,0)上为增函数.
当x>0时,在上为减函数.
故函数的单调递增区间为(-1,0),单调递减区间为.
(Ⅱ)不等式等价于不等式由知,
设则
由(Ⅰ)知,即
所以于是G(x)在上为减函数.
故函数G(x)在上的最小值为
所以a的最大值为
13.(陕西卷21 ( http: / / www. )).(本小题满分12分)
已知函数(且,)恰有一个极大值点和一个极小值点,其中一个是.
(Ⅰ)求函数的另一个极值点;
(Ⅱ)求函数的极大值和极小值,并求时的取值范围.
解:(Ⅰ),由题意知,
即得,(*),.
由得,
由韦达定理知另一个极值点为(或).
(Ⅱ)由(*)式得,即.
当时,;当时,.
(i)当时,在和内是减函数,在内是增函数.
,
,
由及,解得.
(ii)当时,在和内是增函数,在内是减函数.
,
恒成立.
综上可知,所求的取值范围为.
14.(重庆卷20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)
设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.
解:(Ⅰ)因为
又因为曲线通过点(0,2a+3),
故
又曲线在(-1,f(-1))处的切线垂直于y轴,故
即-2a+b=0,因此b=2a.
(Ⅱ)由(Ⅰ)得
故当时,取得最小值-.
此时有
从而
所以
令,解得
当
当
当
由此可见,函数的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).
15.(福建卷19)(本小题满分12分)
已知函数.
(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.
本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分.
(Ⅰ)证明:因为所以′(x)=x2+2x,
由点在函数y=f′(x)的图象上,
又所以
所以,又因为′(n)=n2+2n,所以,
故点也在函数y=f′(x)的图象上.
(Ⅱ)解:,
由得.
当x变化时,﹑的变化情况如下表:
x (-∞,-2) -2 (-2,0) 0 (0,+∞)
f′(x) + 0 - 0 +
f(x) ↗ 极大值 ↘ 极小值 ↗
注意到,从而
①当,此时无极小值;
②当的极小值为,此时无极大值;
③当既无极大值又无极小值.
16.(福建卷22)(本小题满分14分)
已知函数f(x)=ln(1+x)-x1
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)在区间(n∈N*)上的最小值为bx令an=ln(1+n)-bx.
(Ⅲ)如果对一切n,不等式恒成立,求实数c的取值范围;
(Ⅳ)求证:
本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分.
解法一:
(I)因为f(x)=ln(1+x)-x,所以函数定义域为(-1,+),且f〃(x)=-1=.
由f〃(x)>0得-1由f〃(x)<0得x>0,f(x)的单调递增区间为(0,+).
(II)因为f(x)在[0,n]上是减函数,所以bn=f(n)=ln(1+n)-n,
则an=ln(1+n)-bn=ln(1+n)-ln(1+n)+n=n.
(i)
>
又lim,
因此c<1,即实数c的取值范围是(-,1).
(II)由(i)知
因为[]2
=
所以<(nN*),
则<
N*)
解法二:
(Ⅰ)同解法一.
(Ⅱ)因为f(x)在上是减函数,所以
则
(i)因为对n∈N*恒成立.所以对n∈N*恒成立.
则对n∈N*恒成立.
设 n∈N*,则c<g(n)对n∈N*恒成立.
考虑
因为=0,
所以内是减函数;则当n∈N*时,g(n)随n的增大而减小,
又因为=1.
所以对一切因此c≤1,即实数c的取值范围是(-∞,1].
(ⅱ) 由(ⅰ)知
下面用数学归纳法证明不等式
①当n=1时,左边=,右边=,左边<右边.不等式成立.
②假设当n=k时,不等式成立.即
当n=k+1时,
=
即n=k+1时,不等式成立
综合①、②得,不等式成立.
所以
即.
17.(广东卷19).(本小题满分14分)
设,函数,,,试讨论函数的单调性.
【解析】
对于,
当时,函数在上是增函数;
当时,函数在上是减函数,在上是增函数;
对于,
当时,函数在上是减函数;
当时,函数在上是减函数,在上是增函数。
18.(浙江卷21)(本题15分)已知是实数,函数。
(Ⅰ)求函数的单调区间;
(Ⅱ)设为在区间上的最小值。
(i)写出的表达式;
(ii)求的取值范围,使得。
本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分.
(Ⅰ)解:函数的定义域为,
().
若,则,
有单调递增区间.
若,令,得,
当时,,
当时,.
有单调递减区间,单调递增区间.
(Ⅱ)解:(i)若,在上单调递增,
所以.
若,在上单调递减,在上单调递增,
所以.
若,在上单调递减,
所以.
综上所述,
(ii)令.
若,无解.
若,解得.
若,解得.
故的取值范围为.
19.(辽宁卷22).(本小题满分14分)
设函数.
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)是否存在实数a,使得关于x的不等式的解集为(0,+)?若存在,求a的取值范围;若不存在,试说明理由.
本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.满分14分.
解:(Ⅰ). 2分
故当时,,
时,.
所以在单调递增,在单调递减. 4分
由此知在的极大值为,没有极小值. 6分
(Ⅱ)(ⅰ)当时,
由于,
故关于的不等式的解集为. 10分
(ⅱ)当时,由知,其中为正整数,且有
. 12分
又时,.
且.
取整数满足,,且,
则,
即当时,关于的不等式的解集不是.
综合(ⅰ)(ⅱ)知,存在,使得关于的不等式的解集为,且的取值范围为. 14分
s
t
O
A.
s
t
O
s
t
O
s
t
O
B.
C.
D.
2
B
C
A
y
x
1
O
3
4
5
6
1
2
3
4
PAGE
27