第一章 集合与函数概念全章教案

文档属性

名称 第一章 集合与函数概念全章教案
格式 zip
文件大小 1.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2015-04-12 16:54:15

图片预览

文档简介

第一章 集合与函数概念
本章教材分析
通过本章的学习,使学生会使用最基本的集合 ( http: / / www.21cnjy.com )语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,培养学生的抽象概括能力,增强学生应用数学的意识.
课本力求紧密结合学生的生活经验和已有数学知 ( http: / / www.21cnjy.com )识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念.课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律.教学中要高度重视数学概念的背景教学.课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念.课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.在例题和习题的编排中,渗透了分类讨论思想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性.
在教学中,要坚持循序渐进,逐步渗透数形结合 ( http: / / www.21cnjy.com )、分类讨论这方面的训练.对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍.
本章教学时间约需13课时,具体分配如下(仅供参考):
1.1.1 集合的含义与表示 约1课时
1.1.2 集合间的基本关系 约1课时
1.1.3 集合的基本运算 约2课时
1.2.1 函数的概念 约2课时
1.2.1 函数的表示法 约3课时
1.3.1 单调性与最大 约2课时
1.3.2 奇偶性 约1课时
本章复习 约1课时
1.1 集合
1.1.1 集合的含义与表示
整体设计
教学分析
集合论是现代数学的一个重要 ( http: / / www.21cnjy.com )的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.
值得注意的问题:由于本小节的新概念、新 ( http: / / www.21cnjy.com )符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.
三维目标
1.通过实例了解集合的含义,体会元 ( http: / / www.21cnjy.com )素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.
2.了解集合元素的确定性、互异性、 ( http: / / www.21cnjy.com )无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.
重点难点
教学重点:集合的基本概念与表示方法.
教学难点:选择恰当的方法表示一些简单的集合.
课时安排
1课时
设计方案(一)
教学过程
导入新课
思路1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣 ( http: / / www.21cnjy.com )的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.
思路2.首先教师提出问题: ( http: / / www.21cnjy.com )在初中,我们已经接触过一些集合,你能举出一些集合的例子吗 引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢 这就是我们这一堂课所要学习的内容.
推进新课
新知探究
提出问题
①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”
②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?
③其实,生活中有很多东西 ( http: / / www.21cnjy.com )能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢 请你给出集合的含义.
④如果用A表示高一(3)班全体学生组成 ( http: / / www.21cnjy.com )的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系 由此看见元素与集合之间有什么关系?
⑤世界上最高的山能不能构成一个集合?
⑥世界上的高山能不能构成一个集合?
⑦问题⑥说明集合中的元素具有什么性质?
⑧由实数1、2、3、1组成的集合有几个元素?
⑨问题⑧说明集合中的元素具有什么性质?
⑩由实数1、2、3组成的集合记为M,由 ( http: / / www.21cnjy.com )实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?
讨论结果:
①能.
②能.
③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.
④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.
⑤能,是珠穆朗玛峰.
⑥不能.
⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.
⑧3个.
⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.
⑩集合M和N相同.这说明集合中的元 ( http: / / www.21cnjy.com )素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.
提出问题
阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.
活动:先让学生阅读课本,教师指定学生展示 ( http: / / www.21cnjy.com )结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.
讨论结果:
常见数集的专用符号.
N:非负整数集(或自然数集)(全体非负整数的集合);
N*或N+:正整数集(非负整数集N内排除0的集合);
Z:整数集(全体整数的集合);
Q:有理数集(全体有理数的集合);
R:实数集(全体实数的集合).
提出问题
①前面所说的集合是如何表示的?
②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?
③集合共有几种表示法
活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.
②教师可以举例帮助引导:
例如,24的所有正约数构成的集合,把 ( http: / / www.21cnjy.com )24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序;相同的元素不能出现两次.
又例如,不等式x-3>2的解集,这个集 ( http: / / www.21cnjy.com )合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.
③让学生思考总结已经学习了的集合表示法.
讨论结果:
①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.
②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;
描述法:在大括号内先写上表示这 ( http: / / www.21cnjy.com )个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.
③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.
应用示例
思路1
1.下列各组对象不能组成集合的是( )
A.大于6的所有整数 B.高中数学的所有难题
C.被3除余2的所有整数 D.函数y=图象上所有的点
活动:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.
在选项A、C、D中的元素符合集合的确定性;而选项B中,难题没有标准,不符合集合元素的确定性,不能构成集合.
答案:B
变式训练
1.下列条件能形成集合的是( )
A.充分小的负数全体 B.爱好足球的人
C.中国的富翁 D.某公司的全体员工
答案:D
2.2007浙江宁波高三第一次“十校联考”,理1
在数集{2x,x2-x}中,实数x的取值范围是.
分析:实数x的取值满足集合元素的互异性,则2x≠x2-x,解得x≠0且x≠3,∴实数x的取值范围是{x|x<0或03}.
答案:{x|x<0或03}
点评:本题主要考查集合的含义和元素的性质.当所指的对象非常明确时就能构成集合,若元素不明确,没有判断的标准就不能构成集合.
2.用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
活动:学生先思考或讨论列举法的形式,展 ( http: / / www.21cnjy.com )示解答过程.当学生出现错误时,教师及时加以纠正.利用相关的知识先明确集合中的元素,再把元素写入大括号“{}”内,并用逗号隔开.所给的集合均是用自然语言给出的.
提示学生注意以下方面:
(1)自然数中包含零;
(2)解一元二次方程有公式法和分解因式法,方程x2=x的根是x=0,x=1;
(3)除去1和本身外没有其他约数的正整数是质数,1~20以内的所有质数是2、3、5、7、11、13、17、19.
解:(1)设小于10的所有自然数组成的集合为A,那么
A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么
A={0,1}.
(3)设由1~20以内的所有质数组成的集合为C,那么
C={2,3,5,7,11,13,17,19}.
点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.
如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;
列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式.
变式训练
用列举法表示下列集合:
(1)所有绝对值等于8的数的集合A;
(2)所有绝对值小于8的整数的集合B.
答案:(1)A={-8,8};
(2)B={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.
3.试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
活动:先让学生回顾列举法表示集合的步骤,思 ( http: / / www.21cnjy.com )考描述法的形式,再找学生到黑板上书写.当学生出现错误时,教师指导学生书写过程.用描述法表示集合时,要用数学符号表示集合元素的特征.大于10小于20的所有整数用数学符号可以表示为10用描述法表示集合时,用一个小 ( http: / / www.21cnjy.com )写英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内,在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.
在(1)中利用条件中现有元素代表符号x,集合中元素的共同特征就是满足方程x2-2=0.
在(2)的条件中没有元素代表符号,故要 ( http: / / www.21cnjy.com )先设出,用一个小写英文字母表示即可;集合中元素的共同特征有两个:一是大于10小于20(用不等式表示),二是整数(用元素与集合的关系符号“∈”来表示).
解:(1)设方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为
A={x∈R|x2-2=0}.
方程x2-2=0的两个实数根为,,因此,用列举法表示为
A={,}.
(2)设大于10小于20的整数为x,它满足条件x∈Z,且10B={x∈Z|10大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
描述法表示集合的步骤:(1)用字母分别 ( http: / / www.21cnjy.com )表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.
注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.
思路2
1.(1)A={1,3},判断元素3,5和集合A的关系,并用符号表示.
(2)所有素质好的人能否表示为集合
(3)A={2,2,4}表示是否准确
(4)A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合
活动:如果学生没有解题思路,让学生思考以下知识:
(1)元素与集合的关系及其符号表示;
(2)集合元素的性质;
(3)两个集合相同的定义.
解:(1)根据元素与集合的关系有两种:属于(∈)和不属于(),知3属于集合A,即3∈A,5不属于集合A,即5A.
(2)由于素质好的人标准不可量化,不符合集合元素的确定性,故A不能表示为集合.
(3)表示不准确,不符合集合元素的互异性,应表示为A={2,4}.
(4)因其元素相同,A与B表示同一集合.
变式训练
1.数集{3,x,x2-2x}中,实数x满足什么条件
解:集合元素的特征说明{3,x,x2-2x}中元素应满足
即也就是即满足x≠-1,0,3.
2.方程ax2+5x+c=0的解集是{,},则a=________,c=_______.
分析:方程ax2+5x+c=0的解集是{,},那么、是方程的两根,
即有得那么a=-6,c=-1.
答案:6 -1
3.集合A中的元素由关于x的方程kx2-3x+2=0的解构成,其中k∈R,若A中仅有一个元素,求k的值.
解:由于A中元素是关于x的方程kx2-3x+2=0(k∈R)的解,
若k=0,则x=,知A中有一个元素,符合题设;
若k≠0,则方程为一元二次方程,
当Δ=9-8k=0即k=时,kx2-3x+2=0有两相等的实数根,此时A中有一个元素.
综上所述k=0或k=.
4.2006山东高考,理1定义集合运算: ( http: / / www.21cnjy.com )A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为…( )
A.0 B.6 C.12 D.18
分析:∵x∈A,∴x=0或x=1.
当x=0,y∈B时,总有z=0;
当x=1时,
若x=1,y=2时,有z=6;当x=1,y=3时,有z=12.
综上所得,集合A⊙B的所有元素之和为0+6+12=18.
答案:D
注意:①判断元素与此集合的关系时,用列举法表 ( http: / / www.21cnjy.com )示的集合,只需观察这个元素是否在集合中即可.用符号∈,?表示,注意这两个符号的左边写元素,右边写集合,不能互换它们的位置,否则没有意义.
②如果有明确的标准来判断元素在集合中,那么这些元素就能构成集合,否则不能构成集合.
③用列举法表示的集合,直接观察它们的元素是否完全相同,如果完全相同,那么这两个集合就相等,否则不相等.
2.用列举法表示下列集合:
(1)小于5的正奇数组成的集合;
(2)能被3整除且大于4小于15的自然数组成的集合;
(3)方程x2-9=0的解组成的集合;
(4){15以内的质数};
(5){x|∈Z,x∈Z}.
活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.
提示学生注意:
(2)中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;
(4)中除去1和本身外没有其他的约数的正整数是质数;
(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.
解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};
(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};
(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};
(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};
(5)满足∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.
变式训练
用列举法表示下列集合:
(1)x2-4的一次因式组成的集合;
(2){y|y=-x2-2x+3,x∈R,y∈N};
(3)方程x2+6x+9=0的解集;
(4){20以内的质数};
(5){(x,y)|x2+y2=1,x∈Z,y∈Z};
(6){大于0小于3的整数};
(7){x∈R|x2+5x-14=0};
(8){(x,y)|x∈N且1≤x<4,y-2x=0};
(9){(x,y)|x+y=6,x∈N,y∈N}.
思路分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.
解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2};
(2)y=-x2-2x+3=-(x+1)2+4,即y≤4.又y∈N,∴y=0、1、2、3、4,
故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4};
(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3};
(4){20以内的质数}={2,3,5,7,11,13,17,19};
(5)因x∈Z,y∈Z,则x=-1、0、1时,y=0、1、-1,
那么{(x,y)|x2+y2=1,x∈Z,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)};
(6){大于0小于3的整数}={1,2};
(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2};
(8)当x∈N且1≤x<4时,x=1、2、3,此时y=2x,即y=2、4、6,
那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)};
(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.
点评:本题主要考查集合的列举法表示. ( http: / / www.21cnjy.com )列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.
3.用描述法分别表示下列集合:
(1)二次函数y=x2图象上的点组成的集合;
(2)数轴上离原点的距离大于6的点组成的集合;
(3)不等式x-7<3的解集.
活动:让学生思考用描述法的形式如何表示 ( http: / / www.21cnjy.com )平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:
(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x2;
(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;
(3)集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x解:(1)二次函数y=x2上的点(x,y)的坐标满足y=x2,则
二次函数y=x2图象上的点组成的集合表示为{(x,y)|y=x2};
(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则
数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};
(3)不等式x-7<3的解是x<10,则
不等式x-7<3的解集表示为{x|x<10}.
点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.
用描述法表示集合时,集合元素的代表符号不 ( http: / / www.21cnjy.com )能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.
变式训练
用描述法表示下列集合:
(1)方程2x+y=5的解集;
(2)小于10的所有非负整数的集合;
(3)方程ax+by=0(ab≠0)的解;
(4)数轴上离开原点的距离大于3的点的集合;
(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;
(6)方程组的解的集合;
(7){1,3,5,7,…};
(8)x轴上所有点的集合;
(9)非负偶数;
(10)能被3整除的整数.
解:(1){(x,y)|2x+y=5};
(2){x|0≤x<10,x∈Z};
(3){(x,y)|ax+by=0(ab≠0)};
(4){x||x|>3};
(5){(x,y)|xy<0};
(6){(x,y)|};
(7){x|x=2k-1,k∈N*};
(8){(x,y)|x∈R,y=0};
(9){x|x=2k,k∈N};
(10){x|x=3k,k∈Z}.
知能训练
课本P5练习1、2.
【补充练习】
1.下列对象能否组成集合:
(1)数组1、3、5、7;
(2)到两定点距离的和等于两定点间距离的点;
(3)满足3x-2>x+3的全体实数;
(4)所有直角三角形;
(5)美国NBA的著名篮球明星;
(6)所有绝对值等于6的数;
(7)所有绝对值小于3的整数;
(8)中国男子足球队中技术很差的队员;
(9)参加2008年奥运会的中国代表团成员.
答案:(1)(2)(3)(4)(6)(7)(9)能组成集合,(5)(8)不能组成集合.
2.(口答)说出下面集合中的元素:
(1){大于3小于11的偶数};
(2){平方等于1的数};
(3){15的正约数}.
答案:(1)其元素为4,6,8,10;
(2)其元素为-1,1;
(3)其元素为1,3,5,15.
3.用符号∈或填空:
(1)1______N,0______N,-3______N,0.5______N,______N;
(2)1______Z,0______Z,-3______Z,0.5______Z,______Z;
(3)1______Q,0______Q,-3______Q,0.5______Q,______Q;
(4)1______R,0______R,-3______R,0.5______R,______R.
答案:
(1)∈ ∈
(2)∈ ∈ ∈
(3)∈ ∈ ∈ ∈
(4)∈ ∈ ∈ ∈ ∈
4.判断正误:
(1)所有属于N的元素都属于N*. ( )
(2)所有属于N的元素都属于Z. ( )
(3)所有不属于N*的数都不属于Z. ( )
(4)所有不属于Q的实数都属于R. ( )
(5)不属于N的数不能使方程4x=8成立. ( )
答案:(1)× (2)√ (3)× (4)√ (5)√
5.分别用列举法、描述法表示方程组的解集.
解:因的解为
用描述法表示该集合为{(x,y)|};
用列举法表示该集合为{(3,-7)}.
拓展提升
问题:集合A={x|x=a+b,a∈Z,b∈Z},判断下列元素x=0、、与集合A之间的关系.
活动:学生先思考元素与集合之间有什 ( http: / / www.21cnjy.com )么关系,书写过程,将元素x化为a+2b的形式,再判断a、b是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.
解:由于x=a+b,a∈Z,b∈Z,
∴当a=b=0时,x=0.∴0∈A.又=+1=1+,
当a=b=1时,a+b=1+,∴∈A.又=+,
当a=3,b=1时,a+b=+,而3Z,
∴A.∴0∈A,∈A,A.
点评:本题考查集合的描述法表示以及元素与集合间的关系.
课堂小结
本节学习了:(1)集合的概念;(2)集合的表示法;(3)利用列举法和描述法表示集合的步骤.
作业
课本P11习题1.1A组2、3、4.
设计感想
集合语言是现代数学的基本语言,在高中 ( http: / / www.21cnjy.com )数学课程中,它也是学习、掌握和使用数学语言的基础.由于集合的概念较难理解,因此设计时采用渐进式学习,而集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法.在练习过程中熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱.对学生解题过程中遇到的困难给予适当点拨.引导学生养成良好学习习惯,最大限度地挖掘学生的学习潜力是我们教师的奋斗目标.
1.1.2 集合间的基本关系
整体设计
教学分析
课本从学生熟悉的集合(自然数的集合、有 ( http: / / www.21cnjy.com )理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.
值得注意的问题:在集合间的关 ( http: / / www.21cnjy.com )系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.
三维目标
1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.
2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.
重点难点
教学重点:理解集合间包含与相等的含义.
教学难点:理解空集的含义.
课时安排
1课时
教学过程
导入新课
思路1.实数有相等、大小关 ( http: / / www.21cnjy.com )系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)
欲知谁正确,让我们一起来观察、研探.
思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.
类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)
推进新课
新知探究
提出问题
(1)观察下面几个例子:
①A={1,2,3},B={1,2,3,4,5};
②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;
③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能发现两个集合间有什么关系吗?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?
(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论
(4)按升国旗时,每个班的同学都聚集在一起 ( http: / / www.21cnjy.com )站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?
(5)试用Venn图表示例子①中集合A和集合B.
(6)已知A?B,试用Venn图表示集合A和B的关系.
(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?
(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?
(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论
活动:教师从以下方面引导学生:
(1)观察两个集合间元素的特点.
(2)从它们含有的元素间的关系来考虑.规定:如果AB,但存在x∈B,且xA,我们称集合A是集合B的真子集,记作AB(或BA).
(3)实数中的“≤”类比集合中的.
(4)把指定位置看成是由封闭曲线围成的,学生 ( http: / / www.21cnjy.com )看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.
(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.
(6)分类讨论:当AB时,AB或A=B.
(7)方程x2+1=0没有实数解.
(8)空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A(A≠).
(9)类比子集.
讨论结果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中AB,但有一个元素4∈B,且4A;而例子②中集合E和集合F中的元素完全相同.
(3)若AB,且BA,则A=B.
(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.
(5)如图1121所示表示集合A,如图1122所示表示集合B.
( http: / / www.21cnjy.com )图1-1-2-1 ( http: / / www.21cnjy.com )图1-1-2-2
(6)如图1-1-2-3和图1-1-2-4所示.
( http: / / www.21cnjy.com )图1-1-2-3 ( http: / / www.21cnjy.com )图1-1-2-4
(7)不能.因为方程x2+1=0没有实数解.
(8)空集.
(9)若AB,BC,则AC;若AB,BC,则AC.
应用示例
思路1
1.某工厂生产的产品在重量和长度上都合格时, ( http: / / www.21cnjy.com )该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.
(1)则下列包含关系哪些成立?
AB,BA,AC,CA.
(2)试用Venn图表示集合A、B、C间的关系.
活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则AB成立,否则AB不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:
(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;
长度合格的产品不一定是合格产品,但合格的产品一定长度合格.
(2)根据集合A、B、C间的关系来画出Venn图.
解:(1)包含关系成立的有:BA,CA.
(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.
( http: / / www.21cnjy.com )图1-1-2-5
变式训练
课本P7练习3.
点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.
判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.
2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
活动:学生思考子集和真子集的 ( http: / / www.21cnjy.com )定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.
解:集合{a,b}的所有子集为,{a},{b},{a,b}.真子集为,{a},{b}.
变式训练
2007山东济宁一模,1
已知集合P={1,2},那么满足QP的集合Q的个数是( )
A.4 B.3 C.2 D.1
分析:集合P={1,2}含有2个元素,其子集有22=4个,
又集合QP,所以集合Q有4个.
答案:A
点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.
思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?
解:当n=0时,即空集的子集为,即子集的个数是1=20;
当n=1时,即含有一个元素的集合如{a}的子集为,{a},即子集的个数是2=21;
当n=2时,即含有一个元素的集合如{a,b}的子集为,{a},{b},{a,b},即子集的个数是4=22.
……
集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.
思路2
1.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若BA,则实数m=_______.
活动:先让学生思考BA的含义,根据BA,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为BA,所以3∈A,m2∈A.对m2的值分类讨论.
解:∵BA,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.
答案:1
点评:本题主要考查集合和子集的概 ( http: / / www.21cnjy.com )念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.
讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.
变式训练
已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.
分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠,由于NM,则N=或N≠,要对集合N是否为空集分类讨论.
解:由题意得M={x|x>2}≠,则N=或N≠.
当N=时,关于x的方程ax=1中无解,则有a=0;
当N≠时,关于x的方程ax=1中有解,则a≠0,此时x=,又∵NM,∴∈M.∴>2.
∴02.(1)分别写出下列集合的子集及其个数:,{a},{a,b},{a,b,c}.
(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?
活动:学生思考子集的含义,并试着写出子集. ( http: / / www.21cnjy.com )(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.
答案:(1)的子集有:,即?有1个子集;
{a}的子集有:、{a},即{a}有2个子集;
{a,b}的子集有:、{a}、{b}、{a,b},即{a,b}有4个子集;
{a,b,c}的子集有:、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.
(2)由(1)可得:当n=0时,有1=20个子集;
当n=1时,集合M有2=21个子集;
当n=2时,集合M有4=22个子集;
当n=3时,集合M有8=23个子集;
因此含有n个元素的集合M有2n个子集.
变式训练
已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有……( )
A.3个 B.4个 C.5个 D.6个
分析:对集合A所含元素的个数分类讨论.
A=或{2}或{3}或{7}或{2,3}或{2,7}共有6个.
答案:D
点评:本题主要考查子集的概念以及分类讨 ( http: / / www.21cnjy.com )论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.
知能训练
课本P7练习1、2.
【补充练习】
1.判断正误:
(1)空集没有子集. ( )
(2)空集是任何一个集合的真子集. ( )
(3)任一集合必有两个或两个以上子集. ( )
(4)若BA,那么凡不属于集合A的元素,则必不属于B. ( )
分析:关于判断题应确实把握好概念的实质.
解:该题的5个命题,只有(4)是正确的,其余全错.
对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.
对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.
对于(4)来讲,当x∈B时必有x∈A,则xA时也必有xB.
2.集合A={x|-1分析:区分子集与真子集的概念,空集 ( http: / / www.21cnjy.com )是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.
解:因-1即a={x|-1真子集:、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.
3.(1)下列命题正确的是 ( )
A.无限集的真子集是有限集
B.任何一个集合必定有两个子集
C.自然数集是整数集的真子集
D.{1}是质数集的真子集
(2)以下五个式子中,错误的个数为 ( )
①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}{1,0,2}
④∈{0,1,2} ⑤∈{0}
A.5 B.2 C.3 D.4
(3)M={x|3A.aM B.aM C.{a}∈M D.{a}M
分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,
无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.
(2)该题涉及到的是元素与集合,集合与集合的关系.
①应是{1}{0,1,2},④应是{0,1,2},⑤应是{0}.
故错误的有①④⑤.
(3)M={x|3因3{a}是{x|3答案:(1)C (2)C (3)D
4.判断如下集合A与B之间有怎样的包含或相等关系:
(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};
(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.
解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.
(2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},
又x=4n=2·2n,
在x=2m中,m可以取奇数,也可以取偶数;而在x=4n中,2n只能是偶数.
故集合A、B的元素都是偶数.但B中元素是由A中部分元素构成,则有BA.
点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.
5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.
解:因P={x|x2+x-6=0}={2,-3},
当a=0时,Q={x|ax+1=0}=,QP成立.
又当a≠0时,Q={x|ax+1=0}={},要QP成立,则有=2或=-3,a=或a=.
综上所述,a=0或a=或a=.
点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q为空集的情况,而当Q=时,满足QP.
6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4)=0},要使APB,求满足条件的集合P.
解:由A={x∈R|x2-3x+4=0}=,
B={x∈R|(x+1)(x2+3x-4)=0}={-1,1,-4},
由A?PB知集合P非空,且其元素全属于B,即有满足条件的集合P为
{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.
点评:要解决该题,必须确定满足条 ( http: / / www.21cnjy.com )件的集合P的元素,而做到这点,必须明确A、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.
7.设A={0,1},B={x|xA},则A与B应具有何种关系?
解:因A={0,1},B={x|xA},
故x为,{0},{1},{0,1},即{0,1}是B中一元素.故A∈B.
点评:注意该题的特殊性,一集合是另一集合的元素.
8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若BA,求实数m的取值范围;
(2)当x∈Z时,求A的非空真子集个数;
(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.
解:(1)当m+1>2m-1即m<2时,B=满足BA.
当m+1≤2m-1即m≥2时,要使BA成立,
需可得2≤m≤3.综上所得实数m的取值范围m≤3.
(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},
所以,A的非空真子集个数为2上标8-2=254.
(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立.
则①若B≠即m+1>2m-1,得m<2时满足条件;
②若B≠,则要满足条件有:或解之,得m>4.
综上有m<2或m>4.
点评:此问题解决要注意:不应忽略;找A中的元素;分类讨论思想的运用.
拓展提升
问题:已知AB,且AC,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A共有多少个?
活动:学生思考AB,且AC所表达的含义.AB说明集合A是集合B的子集,即集合A中元素属于集合B,同理有集合A中元素属于集合C.因此集合A中的元素是集合B和集合C的公共元素.
思路1:写出由集合B和集合C的公共元素所组成的集合,得满足条件的集合A;
思路2:分析题意,仅求满足条件的集合A的个数,转化为求集合B和集合C的公共元素所组成的集合的子集个数.
解法一:因AB,AC,B={0,1,2,3,4},C={0,2,4,8},由此,满足AB,有:,{0},{1},{2},{3},{4},
{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32(个).
又满足AC的集合A有:,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4},
{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=16(个).
其中同时满足AB,AC的有8个:,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.
解法二:题目只求集合A的个数,而未 ( http: / / www.21cnjy.com )让说明A的具体元素,故可将问题等价转化为B、C的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8(个).
点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.
课堂小结
本节课学习了:
①子集、真子集、空集、Venn图等概念;
②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;
③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.
作业
课本P11习题1.1A组5.
设计感想
本节教学设计注重引导学生通过类比来获得新知,在实际教学中,
要留给学生适当的思考时间,使学生自己 ( http: / / www.21cnjy.com )通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.
1.1.3 集合的基本运算
整体设计
教学分析
课本从学生熟悉的集合出发,结合实例,通 ( http: / / www.21cnjy.com )过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与 ( http: / / www.21cnjy.com )交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集,全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢
教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
( http: / / www.21cnjy.com )
图1-1-3-1
②观察集合A与B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?
②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.
③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.
④试用Venn图表示A∪B=C.
⑤请给出集合的并集定义.
⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A与B与集合C之间有什么关系?
(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};
(ⅱ)A={x|x是国兴中学200 ( http: / / www.21cnjy.com )7年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.
⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论 ( http: / / www.21cnjy.com )问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.
讨论结果:
①集合之间也可以相加,也可以进行运 ( http: / / www.21cnjy.com )算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
②所有属于集合A或属于集合B的元素所组成了集合C.
③C={x|x∈A,或x∈B}.
④如图1131所示.
⑤一般地,由所有属于集合A或属于 ( http: / / www.21cnjy.com )集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1131所示.
⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.
⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
用Venn图表示,如图1132所示.
图1-1-3-2
应用示例
思路1
1.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.
( http: / / www.21cnjy.com )
图1-1-3-3
活动:让学生回顾集合的表示法和交集 ( http: / / www.21cnjy.com )、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.
解:A∪B={4,5,6, ( http: / / www.21cnjy.com )8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.
点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.
本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.
变式训练
1.集合M={1,2,3},N={-1,5,6,7},则M∪N=________.M∩N=________.
答案:{-1,1,2,3,5,6,7}
2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=_________.
分析:由题意得m2=1或2或m,解得m=-1,1,,,0.因m=1不合题意,故舍去.
答案:-1,,,0
3.2007河南实验中学月考,理1满足A∪B={0,2}的集合A与B的组数为 ( )
A.2 B.5 C.7 D.9
分析:∵A∪B={0,2},∴A{0,2}.则A=或A={0}或A={2}或A={0,2}.当A=时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.
答案:D
4.2006辽宁高考,理2设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是 ( )
A.1 B.3 C.4 D.8
分析:转化为求集合A子集的个数.很明显3A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.
答案:C
2.设A={x|-1活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A、B分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.
解:将A={x|-1图1-1-3-4
由图得A∪B={x|-1A∩B={x|-1点评:本类题主要考查集合的并集和交集.用描述法表示的集合,运算时常利用数轴来计算结果.
变式训练
1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.
答案:A∪B=R,A∩B={x|22.设A={x|2x-4=2},B={x|2x-4=0},求A∪B,A∩B.
答案:A∪B={3,2},A∩B=.
3.2007惠州高三第一次调研考试,文1设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )
A.[0,2] B.[1,2] C.[0,4] D.[1,4]
分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].
图1-1-3-5
答案:A
课本P11例6、例7.
思路2
1.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么
活动:
学生先思考集合中元素特征,明确 ( http: / / www.21cnjy.com )集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.
解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0B∪C={x|x>0},A∩B∩C=.
图1-1-3-6
点评:本题主要考查集合的交集和并集.求集合的 ( http: / / www.21cnjy.com )并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn图)写出结果.
变式训练
1.设A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.
解:对任意m∈A,则有m=2n=2·2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,
即对任意m∈A有m∈B,所以AB.
而10∈B但10A,即AB,那么A∩B=A,A∪B=B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
解:满足{1,2}∪B={1,2,3 ( http: / / www.21cnjy.com )}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.
3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.
解:因A∩B={9},则9∈A,a-1=9或a2=9,
a=10或a=±3,
当a=10时,a-5=5,1-a=-9;
当a=3时,a-1=2不合题意.
当a=-3时,a-1=-4不合题意.
故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.
4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3A.{x|-3-3} D.{x|x<1}
分析:集合A={x|2x+1<3}={x|x<1},
观察或由数轴得A∩B={x|-3答案:A
2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:
明确集合A、B中的元素,教师和学生共同探讨满足A∩B=B的集合A、B的关系.集合A是方程x2+4x=0的解组成的集合,可以发现,BA,通过分类讨论集合B是否为空集来求a的值.利用集合的表示法来认识集合A、B均是方程的解集,通过画Venn图发现集合A、B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.∵A∩B=B,∴BA.∴B=或B≠.
当B=时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
当B≠时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0}A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.
变式训练
1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A(A∩B)成立的所有a值的集合是什么?
解:由题意知A(A∩B),即AB,A非空,利用数轴得解得6≤a≤9,
即所有a值的集合是{a|6≤a≤9}.
2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m-1},且A∪B=A,试求实数m的取值范围.
分析:由A∪B=A得BA,则有B=或B≠,因此对集合B分类讨论.
解:∵A∪B=A,∴BA.
又∵A={x|-2≤x≤5}≠,∴B=,或B≠.
当B=时,有m+1>2m-1,∴m<2.
当B≠时,观察图1-1-3-7:
图1-1-3-7
由数轴可得解得-2≤m≤3.
综上所述,实数m的取值范围是m<2或-2≤m≤3,即m≤3.
点评:本题主要考查集合的 ( http: / / www.21cnjy.com )运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.
知能训练
课本P11练习1、2、3.
【补充练习】
1.设a={3,5,6,8},B={4,5,7,8},
(1)求A∩B,A∪B.
(2)用适当的符号(、)填空:
A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B.
解:(1)因A、B的公共元素为5、8,故两集合的公共部分为5、8,
则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.
又A、B两集合的元素3、4、5、6、7、8,
故A∪B={3,4,5,6,7,8}.
(2)由文氏图可知
A∩BA,BA∩B,A∪BA,A∪BB,A∩BA∪B.
2.设A={x|x<5},B={x|x≥0},求A∩B.
解:因x<5及x≥0的公共部分为0≤x<5,
故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.
3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.
解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分.
所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=.
4.设A={x|x>-2},B={x|x≥3},求A∪B.
解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.
5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.
解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.
6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.
分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.
解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),
(2,1)}.
7.若A、B、C为三个集合,A∪B=B∩C,则一定有( )
A.AC B.CA C.A≠C D.A=
分析:思路一:∵(B∩C)B,(B∩C)C,A∪B=B∩C,
∴A∪BB,A∪BC.∴ABC.∴AC.
思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,
令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,
而此时A=C,排除C.
答案:A
拓展提升
观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;
(2)当A=时,A∩B,A∪B这两个运算结果与集合A,B的关系;
(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.
由(1)(2)(3)你发现了什么结论?
活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足AB,用Venn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.
( http: / / www.21cnjy.com )图1-1-3-8
解:A∩B=AABA∪B=B.
可用类似方法,可以得到集合的运算性质,归纳如下:
A∪B=B∪A,A(A∪B),B(A∪B);A∪A=A,A∪=A,ABA∪B=B;
A∩B=B∩A;(A∩B)A,(A∩B)B;A∩A=A;A∩=;ABA∩B=A.
课堂小结
本节主要学习了:
1.集合的交集和并集.
2.通常借助于数轴或Venn图来求交集和并集.
作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.
3.书面作业:课本P12习题1.1A组6、7、8.
设计感想
由于本节课内容比较容易接受,也是历年 ( http: / / www.21cnjy.com )高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.
第2课时
导入新课
问题:①分别在整数范围和实数范围内解方程(x-3)(x)=0,其结果会相同吗
②若集合A={x|0学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.
推进新课
新知探究
提出问题
①用列举法表示下列集合:
A={x∈Z|(x-2)(x+)(x)=0};
B={x∈Q|(x-2)(x+)(x)=0};
C={x∈R|(x-2)(x+)(x)=0}.
②问题①中三个集合相等吗?为什么?
③由此看,解方程时要注意什么?
④问题①,集合Z,Q,R分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.
⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A的所有元素组成的集合B.
⑥请给出补集的定义.
⑦用Venn图表示A.
活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.
讨论结果:
①A={2},B={2,},C={2,,}.
②不相等,因为三个集合中的元素不相同.
③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.
④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.
⑤B={2,3}.
⑥对于一个集合A,全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集.
集合A相对于全集U的补集记为A,即A={x|x∈U,且x?A}.
⑦如图1-1-3-9所示,阴影表示补集.
( http: / / www.21cnjy.com )
图1-1-3-9
应用示例
思路1
1.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A,B.
活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A,B.
解:根据题意,可知U={1,2,3,4,5,6,7,8},所以
A={4,5,6,7,8};B={1,2,7,8}.
点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.
常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B).
变式训练
1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )
A.{1,6} B.{4,5} C.{2,3,4,5,7} D.{1,2,3,6,7}
分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.
思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}.
答案:A
2.设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )
A.{1,2,3,4,5} B.{1,4} C.{1,2,4} D.{3,5}
答案:B
3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩(Q)等于( )
A.{1,2} B.{3,4,5} C.{1,2,6,7} D.{1,2,3,4,5}
答案:A
2.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A∪B).
活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A,B中公共元素组成的集合,(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.
解:根据三角形的分类可知
A∩B=,
A∪B={x|x是锐角三角形或钝角三角形},(A∪B)={x|x是直角三角形}.
变式训练
1.已知集合A={x|3≤x<8},求A.
解:A={x|x<3或x≥8}.
2.设S={x|x是至少有一组对边平行的四边形},A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},求B∩C,B,A.
解:B∩C={x|正方形},B={x|x是邻边不相等的平行四边形},A={x|x是梯形}.
3.已知全集I=R,集合A={x|x2+ax+12b=0},B={x|x2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a、b的值.
答案:a=,b=.
4.设全集U=R,A={x|x≤2+},B={3,4,5,6},则(A)∩B等于…( )
A.{4} B.{4,5,6} C.{2,3,4} D.{1,2,3,4}
分析:∵U=R,A={x|x≤2+},∴A={x|x>2+}.而4,5,6都大于2+,
∴(A)∩B={4,5,6}.
答案:B
思路2
1.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:
(1)A,B;
(2)(A)∪(B),(A∩B),由此你发现了什么结论?
(3)(A)∩(B),(A∪B),由此你发现了什么结论?
活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A,B.
解:如图1-1-3-10所示,
图1-1-3-10
(1)由图得A={x|x<-2或x>4},B={x|x<-3或x>3}.
(2)由图得(A)∪(B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};
∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},
∴(A∩B)={x|-2≤x≤3}={x|x<-2或x>3}.
∴得出结论(A∩B)=(A)∪(B).
(3)由图得(A)∩(B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};
∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},
∴(A∪B)={x|-3≤x≤4}={x|x<-3或x>4}.
∴得出结论(A∪B)=(A)∩(B).
变式训练
1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∪(B)等于( )
A.{1,6} B.{4,5} C.{1,2,3,4,5,7} D.{1,2,3,6,7}
答案:D
2.设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(B)等于( )
A.{1} B.{1,2} C.{2} D.{0,1,2}
答案:D
2.设全集U={x|x≤20,x∈N,x是质数},A∩(B)={3,5},(A)∩B={7,19},(A)∩(B)={2,17},求集合A、B.
活动:学生回顾集合的运算的含义 ( http: / / www.21cnjy.com ),明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.
解:U={2,3,5,7,11,13,17,19},
由题意借助于Venn图,如图1-1-3-11所示,
( http: / / www.21cnjy.com )
图1-1-3-11
∴A={3,5,11,13},B={7,11,13,19}.
点评:本题主要考查集合的运算、Ve ( http: / / www.21cnjy.com )nn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.
变式训练
1.
( http: / / www.21cnjy.com )
图1-1-3-12
设I为全集,M、N、P都是它的子集,则图1-1-3-12中阴影部分表示的集合是( )
A.M∩[(N)∩P] B.M∩(N∪P)
C.[(M)∩(N)]∩P D.M∩N∪(N∩P)
分析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.
思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(N)∩P内,所以阴影部分表示的集合是M∩[(N)∩P].
答案:A
2.设U={1,2,3,4,5,6,7,8,9},(A)∩B={3,7},(B)∩A={2,8},(A)∩(B)={1,5,6},则集合A=________,B=________.
分析:借助Venn,如图1-1-3-13,把相关运算的结果表示出来,自然地就得出集合A、B了.
( http: / / www.21cnjy.com )
图1-1-3-13
答案:{2,4,8,9} {3,4,7,9}
知能训练
课本P11练习4.
【补充练习】
1.设全集U=R,A={x|2x+1>0},试用文字语言表述A的意义.
解:A={x|2x+1>0}即不等式2x+1>0的解集,A中元素均不能使2x+1>0成立,即A中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.
2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.
( http: / / www.21cnjy.com )
图1-1-3-14
分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(S)∩(M∩P).
答案:(S)∩(M∩P)
3.设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A等于( )
A.{1,2} B.{2,3} C.{3,4} D.{1,4}
分析:如图1-1-3-15所示.
( http: / / www.21cnjy.com )
图1-1-3-15
由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.
答案:C
4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )
A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}
分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.
答案:B
5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )
A.{1} B.{1,3} C.{3} D.{1,2,3}
分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.
答案:B
拓展提升
问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:
(1)至少解对其中一题者有多少人?
(2)两题均未解对者有多少人?
分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.
解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},
则A∪C={解对甲题的学生},
B∪C={解对乙题的学生},
A∪B∪C={至少解对一题的学生},
(A∪B∪C)={两题均未解对的学生}.
由已知,A∪C有34个人,C有20个人,
从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.
因此A∪B∪C有N1=14+8+20=42(人),
(A∪B∪C)有N2=50-42=8(人).
∴至少解对其中一题者有42个人,两题均未解对者有8个人.
课堂小结
本节课学习了:
①全集和补集的概念和求法.
②常借助于数轴或Venn图进行集合的补集运算.
作业
课本P12习题1.1A组9、10,B组4.
设计感想
本节教学设计注重渗透数形结合 ( http: / / www.21cnjy.com )的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.
习题详解
(课本P5练习)
1.(1)中国∈A,美国A,印度∈A,英国A.
(2)∵A={x|x2=x}={0,1},∴-1A.
(3)∵B={x|x2+x-6=0}={-3,2},∴3A.
(4)∵C={x∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10},
∴8∈C,9.1C.
2.(1){x|x2=9}或{-3,3};
(2){2,3,5,7};
(3){(x,y)|}或{(1,4)};
(4){x∈R|4x-5<3}或{x|x<2}.
(课本P7练习)
1.,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.
2.(1)a∈{a,b,c}.
(2)∵x2=0,∴x=0.∴{x|x2=0}={0}.
∴0∈{0}.
(3)∵x2+1=0,∴x2=-1.又∵x∈R,
∴方程x2=-1无解.∴{x∈R|x2+1=0}=.∴=.
(4).
(5)∵x2=x,∴x=0或x=1.
∴{x|x2=x}={0,1}.
∴{0}{0,1}.
(6)∵x2-3x+2=0,∴x=1或x=2.
∴{x|x2-3x+2=0}={1,2}.
∴{2,1}={1,2}.
3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴AB.
(2)显然BA,又∵3∈A,且3B,∴BA.
(3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B.
(课本P11练习)
1.A∩B={5,8},A∪B={3,5,6,7,8}.
2.∵x2-4x-5=0,
∴x=-1或x=5.
∵A={x|x2-4x-5=0}={-1,5},
同理,B={-1,1}.
∴A∪B={-1,5}∪{-1,1}={-1,1,5},
A∩B={-1,5}∩{-1,1}={-1}.
3.A∩B={x|x是等腰直角三角形},
A∪B={x|x是等腰三角形或直角三角形}.
4.∵B={2,4,6},A={1,3,6,7},
∴A∩(B)={2,4,5}∩{2,4,6}={2,4},
(A)∩(B)={1,3,6,7}∩{2,4,6}={6}.
(课本P11习题1.1)
A组
1.(1)∈ (2)∈ (3) (4)∈ (5)∈ (6)∈
2.(1)∈ (2) (3)∈
3.(1){2,3,4,5};
(2){-2,1};(3){0,1,2}.
(3)∵-3<2x-1≤3,∴-2<2x≤4.
∴-1又∵x∈Z,∴x=0,1,2.
∴B={x∈Z|-3<2x-1≤3}={0,1,2}.
4.(1){y|y≥-4};
(2){x|x≠0};
(3){x|x≥}.
5.(1)∵A={x|2x-3<3x}={x|x>-3},B={x|x≥2},
∴-4B,-3A,{2}B,BA.
(2)∵A={x|x2-1=0}={-1,1},
∴1∈A,{-1}A,A,{1,-1}=A.
(3);.
6.∵B={x|3x-7≥8-2x}={x|x≥3},
∴A∪B={x|2≤x<4}∪{x|x≥3}={x|x≥2},
A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}.
7.依题意,可知A={1,2,3,4,5,6,7,8},
所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B,
A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C.
又∵B∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.
∴A∩(B∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}.
又∵B∩C={1,2,3}∩{3,4,5,6}={3},
∴A∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.
8.(1)A∪B={x|x是参加一百米跑的同学或参加二百米跑的同学}.
(2)A∩C={x|x是既参加一百米跑又参加四百米跑的同学}.
9.B∩C={x|x是正方形},
B={x|x是邻边不相等的平行四边形},
A={x|x是梯形}.
10.∵A∪B={x|3≤x<7}∪{x|2∴(A∪B)={x|x≤2或x≥10}.
又∵A∩B={x|3≤x<7}∩{x|2∴(A∩B)={x|x<3或x≥7}.
(A)∩B={x|x<3或x≥7}∩{x|2A∪(B)={x|3≤x<7}∪{x|x≤2或x≥10}={x|x≤2或3≤x<7或x≥10}.
B组
1.∵A={1,2},A∪B={1,2},
∴BA.
∴B=,{1},{2},{1,2}.
2.集合D={(x,y)|2x-y=1}∩{(x,y)|x+4y=5}表示直线2x-y=1与直线x+4y=5的交点坐标;
由于D={(x,y)|}={(1,1)},
所以点(1,1)在直线y=x上,
即DC.
3.B={1,4},
当a=3时,A={3},
则A∪B={1,3,4},A∩B=;
当a≠3时,A={3,a},
若a=1,则A∪B={1,3,4},A∩B={1};
若a=4,则A∪B={1,3,4},A∩B={4};
若a≠1且a≠4,则A∪B={1,a,3,4},A∩B=.
综上所得,
当a=3时,A∪B={1,3,4},A∩B=;
当a=1,则A∪B={1,3,4},A∩B={1};
当a=4,则A∪B={1,3,4},A∩B={4};
当a≠3且a≠1且a≠4时,A∪B={1,a,3,4},A∩B=.
4.作出韦恩图,如图1-1-3-16所示,
( http: / / www.21cnjy.com )
图1-1-3-16
由U=A∪B={x∈N|0≤x≤10},A∩(B)={1,3,5,7},
可知B={0,2,4,6,8,9,10}.
1.2 函数及其表示
1.2.1 函数的概念
整体设计
教学分析
函数是中学数学中最重要的基本概念之一.在中学 ( http: / / www.21cnjy.com ),函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.
在学生学习用集合与对应的语言刻画函数之前, ( http: / / www.21cnjy.com )学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.
三维目标
1.会用集合与对应的语言来刻画函数,理解函数 ( http: / / www.21cnjy.com )符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.
2.掌握构成函数的三要素,会求 ( http: / / www.21cnjy.com )一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性.
重点难点
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.
教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.
课时安排
2课时
教学过程
第1课时 函数的概念
导入新课
思路1.北京时间2005年10月12日9时整 ( http: / / www.21cnjy.com ),万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题
请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.
推进新课
新知探究
提出问题
(1)给出下列三种对应:(幻灯片)
①一枚炮弹发射后,经过26 ( http: / / www.21cnjy.com ) s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.
时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应
f:t→h=130t-5t2,t∈A,h∈B.
②近几十年来,大气层的臭氧 ( http: / / www.21cnjy.com )迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.
( http: / / www.21cnjy.com )
图1-2-1-1
根据图1-2-1-1中的曲线,可知时 ( http: / / www.21cnjy.com )间t的变化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:
f:t→S,t∈A,S∈B.
③国际上常用恩格尔系数反映一个国家人民生 ( http: / / www.21cnjy.com )活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
“八五”计划以来我国城镇居民恩格尔系数变化情况
时间 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数y 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
根据上表,可知时间t的变化范围是数 ( http: / / www.21cnjy.com )集A={t|1991≤t≤2001},恩格尔系数y的变化范围是数集B={S|37.9≤S≤53.8}.则有对应:
f:t→y,t∈A,y∈B.
以上三个对应有什么共同特点?
(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.
(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?
(4)函数有意义又指什么?
(5)函数f:A→B的值域为C,那么集合B=C吗?
活动:让学生认真思考三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性.
解:(1)共同特点是:集合A、B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有唯一确定的元素y与之对应.
(2)一般地,设A、B都是非空的数 ( http: / / www.21cnjy.com )集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值的集合{f(x)|x∈A}叫做函数的值域.
在研究函数时常会用到区间的概念,设a,b是两个实数,且a定义 名称 符号 数轴表示
{x|a≤x≤b} 闭区间 [a,b]
{x|a{x|a≤x{x|a{x|x≥a} [a,+∞)
{x|x>a} (a,b]
{x|x≤a} (-∞,a]
{x|xR (-∞,+∞)
(3)自变量的取值范围就是使函数有意义的自变量的取值范围.
(4)函数有意义是指:自变量的取值使分母不为0;被开方数为非负数;如果函数有实际意义时,那么还要满足实际取值等等.
(5)CB.
应用示例
思路1
1.已知函数f(x)=+,
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
活动:
(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使和有意义的自变量的取值范围;有意义,则x+3≥0, 有意义,则x+2≠0,转化解由x+3≥0和x+2≠0组成的不等式组.
(2)让学生回想f(-3),f()表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f()表示自变量x=时对应的函数值.分别将-3,代入函数的对应法则中得f(-3),f()的值.
(3)f(a)表示自变量x=a时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.
分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值.
解:(1)要使函数有意义,自变量x的取值需满足解得-3≤x<-2或x>-2,
即函数的定义域是[-3,-2)∪(-2,+∞).
(2)f(-3)=+=-1;
f()==.
(3)∵a>0,∴a∈[-3,-2)∪(-2,+∞),
即f(a),f(a-1)有意义.
则f(a)=+;
f(a-1)==.
点评:本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.
f(x)是表示关于变量x的函 ( http: / / www.21cnjy.com )数,又可以表示自变量x对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作“2”施加了这样的运算法则:先平方,再减去2,再加上5;当x为某一代数式(或某一个函数记号时),则左右两边的所有x都用同一个代数式(或某一个函数)来代替.如:f(2x+1)=(2x+1)2-(2x+1)+5,f[g(x)]=[g(x)]2-g(x)+5等等.
符号y=f(x)表示变量y是变量 ( http: / / www.21cnjy.com )x的函数,它仅仅是函数符号,并不表示y等于f与x的乘积;符号f(x)与f(m)既有区别又有联系,当m是变量时,函数f(x)与函数f(m)是同一个函数;当m是常数时,f(m)表示自变量x=m对应的函数值,是一个常量.
已知函数的解析式,求函数的定义域,就是求使得函数解析式有意义的自变量的取值范围,即:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合(即求各部分定义域的交集).
(5)对于由实际问题的背景确定的函数,其定义域还要受实际问题的制约.
变式训练
1.求函数y=的定义域.
答案:{x|x≤1,且x≠-1}.
点评:本题容易错解:化简函数的解析式为y=x+1,得函数的定义域为{x|x≤1}.其原因是这样做违背了讨论函数问题要保持定义域优先的原则.化简函数的解析式容易引起函数的定义域发生变化,因此求函数的定义域之前时,不要化简解析式.
2.若f(x)=的定义域为M,g(x)=|x|的定义域为N,令全集U=R,则M∩N等于( )
A.M B.N C.M D.N
分析:由题意得M={x|x>0},N=R,则M∩N={x|x>0}=M.
答案:A
3.已知函数f(x)的定义域是[-1,1],则函数f(2x-1)的定义域是________.
分析:要使函数f(2x-1)有意义,自变量x的取值需满足-1≤2x-1≤1,∴0≤x≤1.
答案:[0,1]
思路2
1.已知函数f(x)=,那么f(1)+f(2)+f()+f(3)+f()
+f(4)+f()=________.
活动:
观察所求式子的特点,引导学生探讨f(a)+f()的值.
解法一:原式==+
=.
解法二:由题意得f(x)+f()===1.
则原式=+1+1+1=.
点评:本题主要考查对函数符号f(x)的理解.对于符号f(x),当x是一个具体的数值时,相应地f(x)也是一个具体的函数值.本题没有求代数式中的各个函数值,而是看到代数式中含有f(x)+f(),故先探讨f(x)+f()的值,从而使问题简单地获解.求含有多个函数符号的代数式值时,通常不是求出每个函数值,而是观察这个代数式的特 找到规律再求解.
受思维定势的影响,本题很容易想到求出 ( http: / / www.21cnjy.com )每个函数值来求解,虽然可行,但是这样会浪费时间,得不偿失.其原因是解题前没有观察思考,没有注意经验的积累.
变式训练
1.已知a、b∈N*,f(a+b)=f(a)f(b),f(1)=2,则=_________.分析:令a=x,b=1(x∈N*),
则有f(x+1)=f(x)f(1)=2f(x),
即有=2(x∈N*).
所以,原式==4012.
答案:4012
2.设函数f(n)=k(k∈N*),k是π的小数点后的第n位数字,π=3.1415926535…,则等于________.
分析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,
则有=1.
答案:1
2.已知A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,则这样的函数f(x)有( )
A.4个 B.6个 C.7个 D.8个
活动:学生思考函数的概念,什么是不同 ( http: / / www.21cnjy.com )的函数.定义域和值域确定后,不同的对应法则就是不同的函数,因此对f(a),f(b),f(c)的值分类讨论,注意要满足f(a)+f(b)+f(c)=0.
解:当f(a)=-1时,
则f(b)=0,f(c)=1或f(b)=1,f(c)=0,
即此时满足条件的函数有2个;
当f(a)=0时,
则f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,
即此时满足条件的函数有3个;
当f(a)=1时,
则f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,
即此时满足条件的函数有2个.
综上所得,满足条件的函数共有2+3+2=7(个).
故选C.
点评:本题主要考查对函数概念的理解,用集合的观点来看待函数.
变式训练
若一系列函数的解析式相同,值域相同 ( http: / / www.21cnjy.com ),但是定义域不同,则称这些函数为“同族函数”.那么解析式为y=x2,值域是{1,4}的“同族函数”共有( )
A.9个 B.8个 C.5个 D.4个
分析:“同族函数”的个数由定义域的个数来确定,此题中每个“同族函数”的定义域中至少含有1个绝对值为1的实数和绝对值为2的实数.
令x2=1,得x=±1;令x2=4,得x=±2.
所有“同族函数”的定义域分别是{1, ( http: / / www.21cnjy.com )2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,-2,2},
{-1,-2,2},{1,-1,-2,2},则“同族函数”共有9个.
答案:A
知能训练
1. 已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,
=______.
解:∵f(p+q)=f(p)f(q),
∴f(x+x)=f(x)f(x),即f2(x)=f(2x).
令q=1,得f(p+1)=f(p)f(1),∴=f(1)=3.
∴原式==2(3+3+3+3+3)=30.
答案:30
2.若f(x)=的定义域为A,g(x)=f(x+1)-f(x)的定义域为B,那么( )
A.A∪B=B B.AB C.AB D.A∩B=
分析:由题意得A={x|x≠0},B={x|x≠0,且x≠-1}.则A∪B=A,则A错;A∩B=B,则D错;由于B?A,则C错,B正确.
答案:B
拓展提升
问题:已知函数f(x)=x2+1,x∈R.
(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.
(2)由(1)你发现了什么结论?并加以证明.
活动:让学生探求f(x)-f(-x)的值.分析(1)中各值的规律,归纳猜想出结论,再用解析式证明.
解:(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;
f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;
f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.
(2)由(1)可发现结论:对任意x∈R,有f(x)=f(-x).证明如下:
由题意得f(-x)=(-x)2+1=x2+1=f(x).
∴对任意x∈R,总有f(x)=f(-x).
课堂小结
本节课学习了:函数的概念、函数定义域的求法和对函数符号f(x)的理解.
作业
课本P24,习题1.2A组1、5.
设计感想
本节教学中,在归纳函数的概念时,本 ( http: / / www.21cnjy.com )节设计运用了大量的实例,如果不借助于信息技术,那么会把时间浪费在实例的书写上,会造成课时不足即拖堂现象.本节重点设计了函数定义域的求法,而函数值域的求法将放在函数的表示法中学习.由于函数是高中数学的重点内容之一,也是高考的重点和热点,因此对函数的概念等知识进行了适当的拓展,以满足高考的需要.
第2课时 函数相等
复 习
1.函数的概念.
2.函数的定义域的求法.
导入新课
思路1.当实数a、b的符 ( http: / / www.21cnjy.com )号相同,绝对值相等时,实数a=b;当集合A、B中元素完全相同时,集合A=B;那么两个函数满足什么条件才相等呢?引出课题:函数相等.
思路2.我们学习了函数的概念,y=x与y=是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.
推进新课
新知探究
提出问题
①指出函数y=x+1的构成要素有几部分?
②一个函数的构成要素有几部分?
③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.
④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?
⑤由此你对函数的三要素有什么新的认识?
讨论结果:①函数y=x+1的构成要素为:定义域R,对应关系x→x+1,值域是R.
②一个函数的构成要素为:定 ( http: / / www.21cnjy.com )义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同.
③定义域和对应关系分别相同.
④值域相同.
⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.
应用示例
思路1
1.下列函数中哪个与函数y=x相等?
(1)y=()2;(2)y=;(3)y=;(4)y=.
活动:
让学生思考两个函数相等的条件后, ( http: / / www.21cnjy.com )引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们定义域和对应关系分别相同,那么这两个函数就相等.