5.3 应用二元一次方程组——鸡兔同笼 同步练习
一、单选题
1.某种仪器由1个A部件和1个B部件配套构成.每个工人每天可以加工A部件100个或者加工B部件60个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?设安排x个人生产A部件,安排y个人生产B部件则列出二元一次方程组为( )
A. B.
C. D.
2.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题,原题如下:“九百九十九文钱,甜果、苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个;”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果、苦果的数量分别为 个、 个,则可列方程组为( )
A. B.
C. D.
3.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.
问:牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、
每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为( )
A. B.
C. D.
4.用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,用制盒身和盒底,可以刚好配多少套?( )
A.144套 B.9套 C.6套 D.15套
5.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩尺;将绳子对折后再去量长木,长木还剩余尺.设木长尺,绳子长尺,则可得方程组( )
A. B.
C. D.
6.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组( ).
A. B.
C. D.
7.《九章算术》中记载:“今有黄金九枚,白银一十一枚,称之适等.交易其一,金轻十三两.问:金、银各一枚各重几何?”译文:“9枚黄金和11枚白银的重量恰好相等,若把一枚黄金和一枚白银交换位置,则原来放黄金那边的重量就要轻13两.问:每枚黄金、白银的重量各多少两?”设每枚黄金 两,每枚白银 两,则可列方程组为( )
A. B.
C. D.
8.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为( )
A. B.
C. D.
9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是( )
A. B.
C. D.
10.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )
小刚:嫒嫒,你上周买的笔和笔记本的价格是多少啊?
媛媛:哦,…,我忘了!只记得先后买了两次,第一次买了5支笔和10本笔记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元钱.
A.0.8元/支,2.6元/本 B.0.8元/支,3.6元/本
C.1.2元/支,2.6元/本 D.1.2元/支,3.6元/本
二、填空题
11.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.其中有一个“绳索量竿”问题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,问索长几尺”.
译文:现有一根杆和一条绳索,用绳索去量杄,绳索比杆子长5尺;如果将绳索对折后再去量竿,就比竿子短5尺,问绳索长几尺?注:一托 尺
设绳索长X尺,竿子长y尺,依题意,可列方程组为 .
12.《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是 ,类似的,图(2)所示的算筹图用方程组表示出来,就是 .
13.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组: .
14.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为 .
15.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己
的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x,乙持钱数为y,可列方程组为 .
三、解答题
16.明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
17.小明上超市买饮料,他看中了盒装牛奶和冰茶,他买了3盒牛奶和4瓶冰茶,共花了29元,已知一盒牛奶和一瓶冰茶价格和为8.5元.一盒牛奶和一瓶冰茶分别需要多少元?
18.暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张,共计200元的零钞用于顾客付款时找零.细心的小明清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票各有多少张吗?请写出演算过程.
19.一家文具超市营业员的流水账记录;五月一日卖出15本笔记本和5只计算器,收入225元,五月二日以同样的价格卖出同样的3本笔记本和6只计算器,收入285元,请你用二元一次方程组的知识进行分析,这个记录是否有错误?
20.孙子算经是我国古代重要的数学著作,其中有如下问题:今有人盗库绢,不知所失几何,但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?大意是:有几个盗贼偷了仓库里的绢,不知道具体偷盗了多少匹绢,只听盗贼在草丛中分组时说:“每人分匹,会剩下匹;每人分匹,还差匹.”问有多少盗贼?多少匹绢?
21.我国西汉时期张苍等人辑撰的《九章算术》是人类科学史上应用数学的“算经之首”,书中记载“今有三人共车,二车空;二人共车,九人步.问:人与车各几何 ”,其意思是:“今有若干人准备乘若干辆马车出行,如果每3人共乘1辆车,则有2辆车空出;如果每2人共乘1辆车,则有9人需步行.问:人数和马车数各是多少 ”.请你解答此问题.
22.我市某中学组织学生参加夏令营活动,原计划租用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客车,则多出1辆车,且空出30个座位没人座.试问:此次参加夏令营的学生共有多少人?原计划租45座客车多少辆?