名称 | 安徽省亳州市蒙城县第六中学2023-2024学年高二上学期期中考试数学试题(扫描版含解析) | | |
格式 | zip | ||
文件大小 | 1.2MB | ||
资源类型 | 教案 | ||
版本资源 | 人教A版(2019) | ||
科目 | 数学 | ||
更新时间 | 2023-11-25 17:37:15 |
A.函数f(x)的最小正周期为
B.p26
T
C.函数x)在区间0,号)上单调递增
代」0
D.函数f(x)的图象可由y=sin2x的图象向左平移π个单位长度得到
6
司思士件市
12.P是直线x+y=4上的一个动点,过点P作圆C:x2+y2=4的两条切线,A,B为切点,则“一,
A.弦长IAB1的最小值为4
B.存在点P,使得四边形PACB为正方形
C.直线AB经过定点(1,1)
1、2中1、21
D.线段AB的中点一定在圆(x2)+(y2)2上
三、填空题:本题共4小题,每小题5分,共20分。
1已知ae(0,m).ma=2则m受a
14.过A(a,0),B(1,2)的直线的斜率大于2,则满足条件的一个a值可以为
15.在一次猜谜语活动中,总共有10道谜题,甲乙两名同学独立竞猜,甲同学猜对了6道谜语,乙同学猜
对了8道谜语.假设猜对每道谜语都是等可能的,任选一道谜语,则甲猜对,乙没有猜对的概率为
x2y2
16.已知椭圆C:。=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,0为坐标原点,点P为椭圆上
一点,PA⊥PF,直线PA与OB交于点M,且MA=2PM,则该椭圆的离心率为
高二数学试卷B第2页(共4页)高二数学(B卷)参考答案
题 1 2 3 4 5 6 7 8 9 10 11 12
号
答 D A C A A B D A ABD AC AB BCD
案
i3 i(1 i) i i2 1 i
1.【解析】因为 .
1 i (1 i)(1 i) 2 2
2.【解析】 f ( f ( 1)) f (e0) f (1) ln1 0 .故选 A.
a 1
3【. 解析】根据两直线间的距离公式,可得 2 2 ,所以 a 3或a 5 .
2
1
4. 【 解 析 】 如 图 , CD= - a ,
2 BC = b-a
, 所 以
BD BC 1 3= +CD= b-a - a = b- a ,故选 A.
2 2
5. k t k t【解析】由题意可得3 0 0 ( 1 A0 )e , 7 0 0 ( 1 0 )e B ,
2 0 e 2k 6 A 0 e 2kB 1 2(k k ) 1故 , ,两式相除得 e
A B ,得 kA kB ln 3 .
1 0 1 0 3 2
6.【解析】根据频率分布直方图可知,成绩在 130 分以下的学生所占比例为1 0.0050 20 0.9 ,成绩在 110
分以下的学生所占比例为 1 (0.0125 0.0050) 20 0.65 ,因此 80% 分位数一定位于 [110,130) 内,由
110+20 0.8-0.65 =122 ,故可估计该校学生成绩的80% 分位数为 122.
0.9-0.65
7.【解析】由题意可知, A 90 , BC 2 5 , AC 2 ,所以 AB=4,所以 MB=2, MC 2 2 ,所以
2a 2 2 2, a 1 2,而 c 5 ,所以b2 2 2 2 .
2 2 2
8.【解析】因为 (c b)sinC (a b)(sin A sin B) b c a 1,可得 ,所以 cos A
1
,又因为
2bc 2 2
1
b2 c2 a2 bc,由均值不等式得bc 4 ,当且仅当"b c"时取得等号,此时 S ABC bc sin A 3 ,2
故选 A.
a
9.【解析】由题意可知 a>b>0,所以 1,A 正确,a b 0,所以 a(a b) 0
a 1 a
,B 正确;将 交
b b 1 b
1 1
叉相乘,可得 a b,故 C 不正确;因为 a b 0, a b a,所以 ,所以 D 正确.
a a b
第 1 页 共 5 页
{#{QQABYQSEggAoABIAARhCQw0CCkKQkBGAACoGxEAMIAAAwQFABCA=}#}
2 2 5 3
10. x y【解析】由题意可得双曲线 C: 1,e ,所以 A 正确;渐近线方程为 y x,所以 B 不正
16 9 4 4
2
确;C上的点到 F距离的最小值为 c a 5 4 1 2b 9,所以 C 正确;因为过 F的最短的弦为 ,所以
a 2
D 不正确.
11.【解析】因为 f ( ) 1,所以 ,所以 f x sin 2x ,函数 f x 的最小正周期为T 2π π,6 6 6 2
π π π
故 A,B 正确;因为 x 0, , 2x ,
5π π 5π
,函数 y sint在 , 上不单调,故 C 错误.
3 6 6 6 6 6
由 y sin2x
π π π
的图象向左平移 个单位长度,得 y sin2 x sin 2x ,故 D 不正确.12 12 6
12.【解析】圆心到直线 x y 4 的距离为 d 2 2 ,根据此时弦长取得最小值等于 2 2 ,所以 A 不正确;
当 CP 垂直直线 l 时,可以证明四边形 PACB 为正方形;所以 B 正确;设点 P(t,4-t),则 AB 方程为
tx (4 t)y 4 ,故过定点 M(1,1),C 正确;由 C 可得,AB的中点一定在以 OM为直径的圆上.
13. 5【答案】 【解析】 (0, ), tan 2 cos 5 5,可得 ,所以 sin( ) cos .
5 5 2 5
1 2
14.【答案】 (满足0 a 1的一个值即可)【解析】 2,可得0 a 1.
2 1 a
3 6 3 8 4
15.【答案】 【解析】甲猜对的概率为 ,乙猜对的概率为 ,则甲猜对,乙没有猜对的概率
25 10 5 10 5
3
为 (1 4 3 ) .
5 5 25
a 3t
16.【答案】 3 1【解析】设M (0, t),P(x, y),因为MA 2PM ,所以得 x , y ,因为点 P 在2 2
( a )2 (3t )2 b2 y y
椭圆上,故可得 2 2
2
1,得 t ,因为 PA PF 所以, 1,得
2
x a x c e 2e 2 0
,
a2 b2 3
所以 e 3 1 .
17. 【解析】(1)因为 a b,所以 a b 0 ,···························································· 1 分
所以1 ( 4) ( 1) 2 2x 0, ············································································ 3 分
所以 x 3 ;·········································································································· 5 分
(2)因为 b 2 6 ,所以16 4 x2 24,····························································6 分
所以 x 2 ,········································································································ 7 分
第 2 页 共 5 页
{#{QQABYQSEggAoABIAARhCQw0CCkKQkBGAACoGxEAMIAAAwQFABCA=}#}
a b 2 2 1
所以向量 a与b所成角的余弦值为 a b 6 2 6 12 6 ·································· 10 分
18.【解析】(1)设C(a,b) ,因为圆 C的圆心在 y x上,所以 a b,···························· 1 分
因为圆 C与直线 y 6相切,所以 6 b 4,··························································· 3 分
得a 2,b 2,或a 10,b 10; ·············································································· 5 分
所以圆 C的标准方程为 (x 2)2 (y 2)2 16, 或 (x 10)2 (y 10)2 16;··················· 6 分
(2)由题意知,圆 C方程为 (x 2)2 (y 2)2 16, P(2,6) ,·······································7 分
点 C到直线 y 2x的距离为 d 2 2 5 ,
5 5
所以 AB 2 16 (2 5 )2 4 95 ,······································································· 8 分
5 5
2 2 5
点 P到直线 y 2x的距离为 d ' ,·························································· 10 分
5 5
S 1 1 4 95 2 5 4 19所以 PAB AB d ' .·················································12 分 2 2 5 5 5
2x 1, x 0,
19.【解析】(1) 可得 g(x) ·······························································1 分
2x 1, x 0.
当 x 0时, g(0) g(0)
当 x 0时, x 0,所以 g( x) 2x 1,得 g( x) g (x) ,
当 x 0时, x 0,所以 g( x) 2x 1,得 g( x) g (x) ,··································4 分
所以 f (x) 为偶函数;···························································································· 5 分
1 5
(2)当 x 0时, 2x 1 (2x 1) 2,得0 x ,············································ 6 分
2 2
1 5
当 x 0时, 2x 1 (2x 1) 2 ,得 x 0,··············································· 7 分
2 6
所以 B
5 5
{x x },···················································································· 8 分
6 2
2a 5 ,
B A 6因为 ,所以 ················································································10 分
2 a 5 ,
2
第 3 页 共 5 页
{#{QQABYQSEggAoABIAARhCQw0CCkKQkBGAACoGxEAMIAAAwQFABCA=}#}
1
所以 a .······································································································· 12 分
2
20.【解析】(1)由 tan 2可知,直线OC的斜率 k 2 ,
直线OC的方程为 2x y 0,················································································· 2 分
因为点 C到 OA的距离为 20 米,设C(xC , yC ) ,故 yC 20 ,可得 xC 10,····················· 3 分
因为 A(10,0) ,所以 P(0,10) ,····················································································4 分
2 0 10
所以点 P到OC的距离d 2 5 ;···························································6 分
5
(2)因为 A(10,0),C(-10,20),得 AC所在直线方程为 x y 10 0 ,································ 7 分
y 0
1,
B(x, y) O B AC x 0设 ,因为点 与点 关于 对称,故可得
x 0 y 0 10 0,
2 2
得 x 10, y 10,即 B(10,10) ,···············································································9 分
所以得 AC 所在直线方程为 x 2y 30 0 ,·····························································10 分
S 1 1△OABC 2S△OAC 2 ( OB yC ) 2 ( 10 20) 200 ,2 2
所以该口袋公园的总面积 200 平方米. ······································································ 12 分
21.【解析】(1)由条件易知直线 l : y kx k过定点 (1,0) ,········································1 分
故 p 2 ,············································································································3 分
即抛物线的方程为 y2 4x;····················································································4 分
(2)易知直线 l斜率必存在,设 l : y k x 1 ,
y2 4x,
A x , y B x , y k 2 x 1 2 4x k 2 2 2 2联立 y k x 1 , 1 1 , 2 2 ,得 即
x 2k 4 x k 0,
由 16 16k 2 0 得 k 2 1,···················································································6 分
2k 2x 4且 x , x1x2 11 2 2 , ·············································································8 分k
FA 2 FB x1 1 2 x2 1 2
8
,得 k 1,·····················································11 分
9
即直线 l : y 2 2 x 1 . ·················································································· 12 分
3
22.【解析】(1)依题意,因为 AB 2 2 ,所以b 2 ,········································· 1 分
第 4 页 共 5 页
{#{QQABYQSEggAoABIAARhCQw0CCkKQkBGAACoGxEAMIAAAwQFABCA=}#}
2 a2 2 1
因为离心率为 ,所以 ,解得 a 2,····················································· 3 分
2 a2 2
x2 y2
所以椭圆 C: 1;··················································································· 4 分
4 2
y kx 1,
(2)由题意得直线 EG方程为 y kx 1,联立 x2 y2 得 (4k 2 2)x2 8kx 4 0,
2 1, m 2
x x 2km
2
1 2
m2k 2 2
设 E x1, y1 ,G x2 , y2 ,由韦达定理, 2 ,················································6 分
x x m 1 2
m2k 2 2
y 2
由 E(x1, y1), A(0, 2),得直线 AE方程为 y
1 x 2 ,
x1
x (2 2)x
(2 2)x
令 y 2,解得 1 ,即H 1 , 2y 2 y 2
,
1 1
k y 2 2 2BG 2 ,kBH ,
又G(x2 , y2 ) , B 0, 2 , x2 (2 2)x1 ·······································8 分
y1 2
y2 2 2 2 y2 2 (2 2)(y1 2) y2 2 (3 2 2)(y1 2)
kBG k
BH x2 (2 2)x1 x2 (2 2)x1 x2 x1 ,
y1 2
而 y1 kx1 1, y kx 1
y
,得 2
2 kx
2
1 2 k 1 22 2 ,x2 x2 x2
(3 2 2)(y1 2) (3 2 2)(kx1 1 2) (3 2 2)k 2 1 ,
x1 x1 x1
k k k 1 2 (3 2 2)k 2 1 1 1 于是 BG BH ( 2 1) (2 2 2)k,x2 x1 x1 x2
1 1 x
1
x2
由韦达定理得 2k
( 2 1) 1 1 (2 2 2)k 0
x1 x2 x x
,故 ,····················11 分
1 2 x1 x2
所以点 H在直线 BG上···························································································12 分
第 5 页 共 5 页
{#{QQABYQSEggAoABIAARhCQw0CCkKQkBGAACoGxEAMIAAAwQFABCA=}#}