人教版数学八年级下册
《18.2.1 矩形》单元测试卷
学校:___________姓名:___________班级:___________考号:___________
一、选择题
1.对角线相等且互相平分的四边形是( )
A.一般四边形 B.平行四边形 C.矩形 D.菱形
2.下列三个命题中,是真命题的有( )
①对角线相等的四边形是矩形;
②三个角是直角的四边形是矩形;
③有一个角是直角的平行四边形是矩形.
A.3个 B.2个 C.1个 D.0个
3.在 ABCD中,AB=3,BC=4,当 ABCD的面积最大时,下结论正确的有( )
①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.
A.①②③ B.①②④ C.②③④ D.①③④
4.如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.
有以下几条几何性质:
①矩形的四个角都是直角;②矩形的对角线互相平分;③等腰三角形的“三线合一”.
小明的作法依据是( )
A.①② B.①③ C.②③ D.①②③
5.矩形具有而平行四边形不一定具有的性质是( )
A.对边相等 B.对角相等 C.对角线相等 D.对角线互相平分
6.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A. B.6 C.4 D.5
7.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为( )
A.10cm B.8cm C.6cm D.5cm
8.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2 km,则M,C两点间的距离为( )
A.0.5 km B.0.6 km C.0.9 km D.1.2 km
二、填空题
9.如图,在Rt△ABC中,∠ACB=90°,AB=6,D为AB边的中点,则CD= .
10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为____.
11.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____
12.如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为 .
13.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,
则∠2= .
14.如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为 .
三、解答题
15.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE.
(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.
16.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCDE是矩形.
17.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的。
18.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.
(1)求证:OE=OF;
(2)若BC=2,求AB的长.
参考答案
1.C 2.B 3.B 4.C 5.C 6.B 7.D 8.D
9.3
10.12;
11.∠2=∠3
12.6;
13.115°.
14..
15. (1)证明:因为AB=AC,
所以∠B=∠ACB,
又因为AD是BC边上的中线,
所以AD⊥BC,即∠ADB=90°.
因为AE∥BC,所以∠EAC=∠ACB,
所以∠B=∠EAC.
因为CE⊥AE,所以∠CEA=90°,
所以∠ADB=∠CEA.
又AB=CA,
所以△ABD≌△CAE(A.A.S.).
(2)解:AB∥DE且AB=DE.
证明:由△ABD≌△CAE可得AE=BD,
又AE∥BD,所以四边形ABDE是平行四边形,所以AB∥DE且AB=DE.
16.证明:∵AC=AB,AD=AE,∠BAD=∠CAE,
∴∠BAD-∠CAB=∠CAE-∠CAB,即∠CAD=∠BAE.
∴△ADC≌△AEB(SAS).
∴DC=BE.
又∵DE=BC,
∴四边形BCDE是平行四边形.
连接BD,CE.
∵AB=AC,AD=AE,∠BAD=∠CAE,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∴四边形BCDE是矩形.
17.解:当F为BC上的中点时,△FDE是等腰三角形,
证明:∵DC⊥DB,F为BC上的中点,
∴DF=0.5BC,
∵BE⊥EC,F为BC上的中点,
∴EF=0.5BC,
∴DF=EF,
∴△FDE是等腰三角形。
18.(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:如图,连接OB,
∵BE=BF,OE=OF,∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,
∵BC=2,∴AC=2BC=4,
∴AB===6.