五 生活中的多边形——《表面积的变化》
教学目标:
学生通过把若干个相同的正方体或长方体拼成较大的长方体的操作活动,发现拼接前后几何体表面积的变化规律,并能够应用所发现的规律解决一些简单的实际问题。
使学生在活动过程中进一步积累空间与图形的学习经验,增强空间观念,发展数学思维能力。
使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。
二.教学重难点
教学重点:让学生通过操作探索几何体表面积变化的规律。
教学难点:经过学生动手操作,增强学生的空间观念,能运用知识解决生活中的数学问题三.教学过程:
生活情境,引入新课
师:同学们看,这是老师在超市买来的3盒一组包装的面巾纸,里面的纸盒是这样摆放的,除了这样摆放,还可以怎样摆?谁上来摆一摆?你来摆一摆,还可以怎样摆?那纸巾厂为什么要这样装呢?如果从尽量节省包装纸的成本来考虑,使所用的包装纸尽量少,也就是表面积要尽量小,这样的包装是一个不错的选择。看来,拼摆的方式不同,表面积也是会变化的。这节课我们就来研究表面积的变化。
【设计意图:】以餐巾纸的包装作为情境引入,非常切合实际生活,使数学学习生活化。让学生说一说“为什么我们常见的三盒装餐巾纸通常都以这种样式进行包装呢?”引发学生从数学的角度思考生活中的实际问题。这样设计能刺激学生的好奇心,进而激发学生强烈的参与意识,产生学习的需要,为探索正方体和长方体。
拼拼摆摆,体验规律
活动一:2个小正方体拼接表面积变化情况谈话:我们先从最简单的正方体入手来研究,这么多的小正方体排在一起,表面积会怎样变化呢?你打算怎样研究?生:数量太多了!师:怎么办?生:我们可以先从最简单的开始研究,先找到其中包含的规律,再利用规律,解决较难的题目。
师:这是两个体积为1立方厘米的正方体,把两个正方体拼在一起后你发现表面积有何变化? 是怎样变化的呢?学生可能的发现:表面积减少了,减少了几个面?追问:谁来指一指,藏起了的两个面在哪?闭眼睛想少的两个面在哪里? 展示:把两个正方体拼接在一起,表面积会减少,减少了两个面的面积.
活动二:几个相同正方体拼成长方体后表面积的变化情况。
师:如果用3个、4个、5个甚至更多相同正方体像这样排成一排拼成一个长方体,这其中是不是也藏着一些规律呢?想不想自己动手研究 那好,请4人小组合作完成,填好实验单,(课件出示表格),准备汇报.比一比那个小组完成最快,合作最好!开始!学生带着自己的研究单上来交流自己小组的发现。
(2)全班交流:学生可能发现的规律:1拼接的次数都比正方体的个数少1。2每拼一次减少2个面的面积;②减少的正方形面的个数=拼的次数×2;③增加一个正方体,就减少2个正方形面的面积;④减少的正方形面的个数=(正方体的个数—1)×2;
师生小结:(结合课件)每拼接一次,表面积就减少两个面.拼接的次数总比正方体的个数少1。如果有10个相同正方体像这样排成一排拼成一个长方体,那减少了几个面的面积呢?20呢,n个呢?把n个相同正方体像这样排成一排拼成一个长方体,就拼接n-1次,就会减少2(n-1)个面。
回忆刚才我们研究过程,我们遇到1000个小正方体拼在一块的表面积变化,我们是怎样研究的?对,先从最简单的情况开始研究,慢慢寻找规律,探索规律,找到规律后,运用规律解决复杂的情况。在数学上这一种很好的数学思想,化繁为简。著名的数学家华罗庚说过:善于退,足够的退,退到最原始的而不失重要性的地方,退到我们容易看清问题的地方,是学好数学的一个诀窍。
拼拼说说,规律拓展
活动三:长方体剪切情况
谈话:刚才我们通过操作研究,我们发现几个相同的正方体,拼成一排,表面积都发生了变化,而且都有一定的规律。现在把一个大长方体切成1000个小正方体表面积会怎样变化?你打算怎样研究?生独立思考后,跟你同桌交流你的想法!汇报:说一说是怎样想的?............学生可能出现:表面积会增加,而且每切一次,表面积就会增加2个面。(板书:剪切一次,增加两个面)20个会切19次,增加19个2个面。【学生利用刚才的规律,进行类推,发现剪切与拼接道理是相同的,只是拼接一次,表面积会减少两个面;而剪切一次,表面积会增加两个面】
比较刚才我们研究的两种情况,有何发现? 都用了化繁为简、以退为进的思想,不同:拼接一次,减少2个面,而剪切一次是增加两个面。咱班同学真善于在比较中学习成长!
2.活动四:长方体拼接情况。刚才我们研究了几个正方体拼接时表面积的变化,那相同的长方体在拼摆过程中是不是也藏着一些规律呢?想不想继续来研究?(1)提问:这是两个同样大的长方体,拼成不同的长方体有几种拼法? (2)是否这三种?这三种拼法中有共同特点吗?生:都比原来减少了2个面的面积,但是不同的拼法减少的面积就不同。
三种拼法中哪一种这拼成的长方体表面积最小?你是怎么想的?引导学生发现:不管怎样拼,每次都会减少两个长方形面的面积;1号长方体表面积最小,因为减少的面积越大,拼成的大长方体的表面积就越小。师生小结:由此我们知道,拼接面越大,表面积就越小,拼接面越小,表面积就越大。
联系生活合理设计:1.你现在能解释纸巾厂为什么要这样包装了?其实生活中这样的例子很多!那种更节省包装纸?为什么?相信你会用数学的眼睛去观察周围的世界,来请你当小小设计师。2.10盒磁带怎么包装,最节省包装纸?合作要求:(1)先独立思考,怎样拼才能使拼成的长方体表面积最小,在小组里交流。(2)选取小组中最好的方法拼一拼。(3)想一想为什么这种拼法最节省包装纸?同一数量的正方体,重叠的面越多,表面积越小,那么包装材料越省。2.展示不同拼法,说一说为什么这种拼法拼成的长方形表面积最小。师: 其实数学知识无处不在,只要我们多观察、多思考,就能用数学知识解释和解决生活中的许多问题。
课堂总结:通过这节课,你学会了什么?生:知识上的,方法上的收获。师生小结:我们一起回头看:一开始我们遇到比较复杂的问题,我们把它转化为简单的问题,开始了我们的实践探究,通过分析我们找到了其中的内在规律,最后应用到解决复杂的问题中,在此过程中我们学会了转化和化繁为简方法。看来研究简单的数学问题,是为了帮助我们更好地思考复杂的数学问题。我们研究了正方体、长方体的不同拼接方式,解决了生活中的包装问题,相信同学们研究的脚步越来越快,期待你的重大发现!
1