4.3用一元一次方程解决问题---工程问题
一、选择题.
1.一项工程甲单独完成需要m天,乙单独完成需要10天,甲单独做a(a<m)天后,剩下的工程由乙完成,那么乙完成工程需要的天数( )
A.10(1) B.10﹣a C.10(1) D.m(1)
2.一项工程,甲单独完成需10天,乙单独完成需15天,现在两人合作完成后厂家共付给450元,如果按完成工作量的多少分配,则甲、乙两人各分得( )
A.250元,200元 B.260元,190元
C.265元,185元 D.270元,180元
3.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.( )
A.10 B.25 C.30 D.35
4.一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要( )天才能完成该工程.
A.6 B.7 C.6 D.7
5.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x天完成这项工程,则可列的方程是( )
A. B.
C. D.
6.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x天,则所列方程为( )
A. B.
C. D.
7.一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做4天,然后甲、乙两人合作x天完成这项工程,则下面所列方程正确的是( )
A. B.
C. D.
8.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x天完成,则符合题意的是( )
A. B.
C. D.
9.某车间原计划13小时生产一批零件,实际每小时多生产10个,用了12小时完成任务,还比原计划多生产了60个.设原计划每小时生产x个零件,则可列方程为( )
A.13x=12(x+10)+60 B.13x+60=12(x+10)
C.10 D.10
10.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是( )
A.1 B.1
C.1 D.1
二、填空题
11.一项工程,甲单独做10天可以完成,乙单独做15天可以完成,甲队先做两天,余下的工程由两队合做x天可以完成,则由题意可列出的方程是 .
12.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺少4棵树苗.若设参与种树的人数为x人,则所列方程为 .
13.某工厂每天需要生产50个零件才能在规定的时间内完成生产一批零件的任务,实际该工厂每天比计划多生产了6个零件,结果比规定的时间提前3天完成.若设该工厂要完成的零件任务为x个,则可列方程为 .
14.甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工,若乙单独整理需要20分钟完工.若甲先整理了10分钟,然后,甲、乙合作整理x分钟后完成此项工作.请列出方程: .
15.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为 .
16.有甲、乙两桶油,从甲桶到出到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x升,可列方程为 .
17.一项工程,甲单独做10天完成,乙单独做15天完成.两人合作, 天可以完成.
18.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了 天.
三、解答题
19.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
20.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?
21.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.
(1)问该中学库存多少套桌凳?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?
22.某地为了打造风光带,将一段长为360m的河道整治任务由甲,乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求:
(1)甲,乙两个工程队分别整治了多长的河道?
(2)甲、乙两工程队各整治河道的天数.
23.列一元一次方程解答下列问题:
(1)义乌市为了搞好“五水共治”工作,将一段长为3600m的河道任务交由甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治240m,乙工程队每天整治160m,试求甲乙两个工程队分别整治了多长的河道.
(2)小玲在数学书上发现如图所示的题目,两个方框表示的是同一个数,请你帮小玲求出方框所表示的数.
24.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.
(1)甲、乙两队合作多少天?
(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
答案
一、选择题.
A.D.B.D.D.C.D.A.B.A.
二、填空题
11..
12.5x+3=6x﹣4.
13.3.
14..
15.1.
16.(1)x﹣(30x)=6.
17.6.
18.6.
三、解答题
19.设原计划每小时生产x个零件,由题意得:
26x+60=24(x+5),
解得:x=30,
所以原计划生产零件个数为:26x=780,
答:原计划生产780零件.
20.设乙工程队再单独需x个月能完成,
由题意,得2x=1.
解得x=1.
答:乙工程队再单独需1个月能完成.
21.(1)设该中学库存x套桌凳,甲需要天,乙需要天,
由题意得:20,
解方程得:x=960.
经检验x=960是所列方程的解,
答:该中学库存960套桌凳;
(2)设①②③三种修理方案的费用分别为y1、y2、y3元,
则y1=(80+10)5400
y2=(120+10)5200
y3=(80+120+10)5040
综上可知,选择方案③更省时省钱.
22.(1))设甲工程队整治了x天,则乙工程队整治了(20﹣x)天,由题意,得
24x+16(20﹣x)=360,
解得:x=5,
∴乙队整治了20﹣5=15(天),
∴甲队整治的河道长为:24×5=120(m);
乙队整治的河道长为:16×15=240(m).
答:甲工程队整治了120m,乙工程队整治了240m.
(2)由(1)得:甲工程队整治了5天,乙工程队整治了15天.
23.(1)设甲工程队做了x天,则乙工程队做了(20﹣x)天,
根据题意可得:240x+160(20﹣x)=3600,
解得:x=5,
故甲工程队整治了5×240=1200(m),乙工程队整治了160×15=2400(m).
答:甲工程队整治了1200m的河道,乙工程队整治了2400m的河道.
(2)设方框内的数是y,则
12×460+12y=100y×21+64×21
解得y=2.
即方框所表示的数是2.
24.(1)设甲、乙两队合作t天,
由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的,
∴60﹣20=t(1)
解得:t=24
(2)(2)设甲、乙合作完成需y天,则有()×y=1.
解得,y=36,
①甲单独完成需付工程款为60×3.5=210(万元).
②乙单独完成超过计划天数不符题意,
③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.