课件21张PPT。 第二章 统计
2.3.1 变量间的相关关系
2.3.2 两个变量的线性相关
问题提出1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3.我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.变量之间的相关
关系和线性相关知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗? 思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何? 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.思考4:对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型? 一个为可控变量,另一个为随机变量;
思考5:相关关系与函数关系的异同点?不同点: 一、函数关系是一种确定的关系;而相关关系是一种非确定关系。函数关系是自变量与函数之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。二、函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。相同点:均是指两个变量的关系 在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用,变量之间的相关关系带有不确定性,这需要通过惧大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断。 对具有相关关系的两个变量进行统计分析的方法叫回归分析 相关关系是进行回归分析的基础,同时,也是散点图的基础。知识探究(二):散点图 【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 思考3:上图叫做散点图,你能描述一下散点图的含义吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图. 思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系? 思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何? 思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点? 一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.思考7:你能列举一些生活中的变量成正相关或负相关的实例吗? 理论迁移例1 在下列两个变量的关系中,哪些是相关关系?
①正方形边长与面积之间的关系;
②作文水平与课外阅读量之间的关系;
③人的身高与年龄之间的关系;
④降雪量与交通事故的发生率之间的关系.答案:②, ③, ④例2 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关. 正相关1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法. 小结课件21张PPT。2.3 变量间的相关关系第二章 统 计小明,你数学成绩不太好,物理怎么样?也不太好啊.学不好数学,物理也是学不好的?????...你认为老师的说法对吗?事实上,我们在考察数学成绩对物理成绩影响的同时,还必须考虑到其他的因素:爱好,努力程度如果单纯从数学对物理的影响来考虑,就是考虑这两者之间的相关关系我们在生活中,碰到很多相关关系的问题:物理成绩数学成绩学习兴趣花费时间其他因素一、变量之间的相关关系思考: 我们经常听到有这样的说法“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。”
按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系(相互关系)。这种说法有没有根据呢?分析:
物理成绩和数学成绩是两个变量,从经验看,由于物理课程涉及比较多的数学知识。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如是否喜欢物理,用在物理学习上的时间等等。
总结:
不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。这种关系不像销售额与销售量的关系(销售额=销售量×价格)是确定型的,这两个变量之间存在一定的相互关系,它们之间是一种不确定型的关系。
要找到他们的关系,就需要收集大量的数据,对数据进行统计分析,分析其中的规律,才能对他们之间的关系作出判断.变量间的相关关系在我们的生活中广泛存在:
如: (1)商品销售收入与广告支出经费之间的关系
(2)粮食产量与施肥量之间的关系
(3)人体内脂肪含量与年龄之间的关系2、两个变量之间产生相关关系的原因是受许多不确定的随机因素的影响.1. 变量之间除了函数关系外,还有相关关系.相关关系的概念:
两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系。
如何研究这种变量间的相关关系呢?
通过收集大量的数据,进行统计,对数据分析,找出其中的规律,对其相关关系作出一定判断.二、两个变量的线性相关探究一 根据上述数据,人体的脂肪含量和年龄之间有怎样的关系?年龄脂肪239.52717.83921.24125.9454927.526.35028.25329.65430.25631.45730.8年龄脂肪5833.56035.26134.6 从上表发现,大体上来看,随年龄增加,人体中脂肪的百分比也在增加。为了确定这一关系的细节,需要我们作统计图、表,这样可以使我们对这两个变量之间的关系有一个直观上的印象和判断. 下面我们以年龄为横轴,
脂肪含量为纵轴建立直
角坐标系,作出各个点,
称该图为散点图。如图:O20253035404550556065年龄脂肪含量510152025303540从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。但有的两个变量的相关,如下图所示:如高原含氧量与海拔高度
的相关关系,海平面以上,
海拔高度越高,含氧量越
少。
作出散点图发现,它们散
布在从左上角到右下角的区
域内。又如汽车的载重和汽
车每消耗1升汽油所行使的
平均路程,称它们成负相关.O散点图有了,又该如何寻找这个相关关系呢?
当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢我们再观察它的图像发现这些点大致分布在一条直线附 近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线叫做回归直线,该直线方程简称回归方程。 那么,我们该怎样来求出这个回归方程?
20253035404550556065年龄脂肪含量0510152025303540(二)回归直线如何求回归直线的方程探究 实际上,求回归直线的关键是如何用数学的方法来刻画”从整体上看,各点到此直线的距离最小”.问题归结为:a,b取什么值时Q最小,即总体偏差最小.下面是计算回归方程的斜率和截距的一般公式.这种通过求总体偏差的最小值而得到回归直线的方法就是最小二乘法.理论迁移 例 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表: (1)画出散点图;
(2)从散点图中发现气温与热饮杯数之 间关系的一般规律;
(3)求回归方程;
(4)如果某天的气温是2℃,预测这天卖出的热饮杯数.当x=2时,y=143.063.小结:
(1)判断变量之间有无相关关系,简便方法就是画散点图。
(2)当数字少时,可用人工或计算器,求回归方程;当数字多时,用Excel求回归方程。
(3)利用回归方程,可以进行预测。课件22张PPT。 第二章 统计
2.3.2 两个变量的线性相关
问题提出1. 两个变量之间的相关关系的含义如何?成正相关和负相关的两个相关变量的散点图分别有什么特点?自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系.正相关的散点图中的点散布在从左下角到右上角的区域,负相关的散点图中的点散布在从左上角到右下角的区域 2.观察人体的脂肪含量百分比和年龄的样本数据的散点图,这两个相关变量成正相关.我们需要进一步考虑的问题是,当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢?对此,我们从理论上作些研究.回归直线及其方程知识探究(一):回归直线 思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗? 思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点? 这些点大致分布在一条直线附近.思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?一定思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?一条思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?知识探究(二):回归方程 在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计. 思考1:回归直线与散点图中各点的位置应具有怎样的关系? 整体上最接近 思考2:对于求回归直线方程,你有哪些想法? 可以用 或 ,
其中 . 思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归
方程为 可以用哪些数量关系来刻画各样本点与回归直线的接近程度? 思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适? 思考5:根据有关数学原理分析,当
时,总体偏差 为最小,这样就得到
了回归方程,这种求回归方程的方法叫做最小二乘法.思考6:利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为
,由此我们可以根据一个人个年龄预测其体内脂肪含量的百分比的回归值.若某人37岁,则其体内脂肪含量的百分比约为多少?20.9%理论迁移 例 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表: (1)画出散点图;
(2)从散点图中发现气温与热饮杯数之 间关系的一般规律;
(3)求回归方程;
(4)如果某天的气温是2℃,预测这天卖出的热饮杯数.当x=2时,y=143.063.小结1.求样本数据的线性回归方程,可按下列步骤进行:第一步,计算平均数 , 第二步,求和 , 第三步,计算 第四步,写出回归方程 2.回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性. 3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.