2.1 对数的运算性质
课后训练
一、A组
1.log242+log243+log244等于( ).
A.1 B.2 C.24 D.
2.化简log612-2log6的结果为( ).
A.6 B.12 C.log6 D.
3.方程(lg x)2+(lg 2+lg 3)lg x+lg 2lg 3=0的两根x1,x2的积x1x2等于( ).
A.lg 2+lg 3 B.lg 2lg 3
C. D.-6
4.的值等于( ).
A.2+ B.2 C.2+ D.1+
5.(多选题)若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的有( ).
A.logax2=2logax
B.logax2=2loga|x|
C.loga(xy)=logax+logay
D.loga(xy)=loga|x|+loga|y|
6.已知a=log32,那么log38-2log36用a表示为( ).
A.a-2 B.5a-2
C.3a-(1+a)2 D.3a-a2-1
7.已知(a>0),则loa= .
8.计算÷10= .
9.lg 0.01+log216的值是 .
10.解方程(lg x)2+lg x5-6=0.
二、B组
1.计算log3+lg 25+lg 4+的值为( ).
A.- B.4 C.- D.
2.已知函数f(x)满足:当x≥4时,f(x)=;当x<4时,f(x)=f(x+1),则f(2+log23)=( ).
A. B. C. D.
3.若lg a,lg b是方程2x2-4x+1=0的两个实根,则的值为( ).
A.2 B. C.4 D.
4.若lg 2=a,lg 3=b,则用a,b表示lg= .
5.已知2x=9,log2=y,则x+2y的值为 .
6.求下列各式的值.
(1)log535+2log5-log5-log514;
(2)[(1-log63)2+log62·log618]÷log64;
(3)lg 5(lg 8+lg 1 000)+(lg )2+lg 0.06+lg .
7.已知f(x)=x2+(lg a+2)x+lg b,f(-1)=-2,方程f(x)=2x至多有一个实根,求实数a,b的值.
8.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=3,求实数a的取值范围.
1.解析:log242+log243+log244=log24(2×3×4)=log2424=1.故选A.
答案:A
2.解析:原式=log6-log62=log6=log6.故选C.
答案:C
3.解析:∵lg x1+lg x2=-(lg 2+lg 3),
∴lg(x1x2)=-lg 6=lg 6-1=lg ,
∴x1x2=.故选C.
答案:C
4.解析:=2×=2×=2,选B.
答案:B
5.解析:A中若x<0则不成立;C中若x<0,y<0也不成立,故选AC.
答案:AC
6.解析:由log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2.
答案:A
7.解析:∵,∴a2=,
∴a=,∴loa=lo=3.
答案:3
8.解析:÷10÷10-1=-2×10=-20.
答案:-20
9.解析:lg 0.01+log216=lg +log224=-2+4=2.
答案:2
10.解:原方程可化为(lg x)2+5lg x-6=0,
即(lg x+6)(lg x-1)=0,
所以lg x=-6或lg x=1,
解得x=10-6或x=10.
经检验x=10-6和x=10都是原方程的解,
所以原方程的解为x=10-6或x=10.
1.解析:原式=log3-log33+lg 52+lg 22+2=log333-1+2lg 5+2lg 2+2=-1+2+2=.
答案:D
2.解析:因为2+log23<2+log24=4,3+log23>3+log22=4,
所以f(2+log23)=f(2+log23+1)=f(3+log23)=.
答案:A
3.解析:=(lg a-lg b)2=(lg a+lg b)2-4lg alg b=22-4×=2.
答案:A
4.解析:lglg 45=lg(5×9)=lg 5+lg 9=(1-lg 2)+lg 3=-lg 2+lg 3+=-a+b+.
答案:-a+b+
5.解析:由2x=9,得log29=x,
所以x+2y=log29+2log2=log29+log2=log264=6.
答案:6
6.解:(1)原式=log535+log52-log5-log514=log5=log5=log525=2.
(2)原式=÷log64=[(log62)2+log62(log636-log62)]÷log64=[(log62)2+2log62-(log62)2]÷log64=2log62÷log64=log64÷log64=1.
(3)原式=lg 5(3lg 2+3)+3(lg 2)2+lg -lg 6=lg 5(3lg 2+3)+3(lg 2)2+lg 6-2-lg 6=3·lg 5·lg 2+3lg 5+3·(lg 2)2-2=3lg 2(lg 2+lg 5)+3lg 5-2=3lg 2+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.
7.解:由f(-1)=-2得,1-(lg a+2)+lg b=-2,所以lg=-1=lg,所以,即a=10b.
又因为方程f(x)=2x至多有一个实根,即方程x2+xlg a+lg b=0至多有一个实根,所以(lg a)2-4lg b≤0,即[lg(10b)]2-4lg b≤0,所以(1-lg b)2≤0,所以lg b=1,b=10,从而a=100.
故实数a,b的值分别为100,10.
8.解:∵logax+logay=3,∴loga(xy)=3.
∴xy=a3.∴y=.
∵函数y=(a>1)在区间(0,+∞)上单调递减,又当x=a时,y=a2,
当x=2a时,y=,∴ [a,a2].
∴≥a.又a>1,∴a≥2.
∴实数a的取值范围为[2,+∞).
1