华东师大版八年级下册数学第18章平行四边形第2节《平行四边形的判定》参考教案(2份打包)

文档属性

名称 华东师大版八年级下册数学第18章平行四边形第2节《平行四边形的判定》参考教案(2份打包)
格式 zip
文件大小 45.4KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2015-04-21 08:00:48

文档简介

18.2 平行四边形的判定(1)
教学目的
1.使学生掌握用平行四边形的定义判定一个四边形是平行四边形;
2.理解并掌握二组对边分别相等、一组对边平行且相等的四边形是平行四边形;
3.能运这三种方法来证明一个四边形是平行四边形。
教学重点和难点
重点:平行四边形的判定定理;
难点:掌握平行四边形的性质和判定的区别及熟练应用。
教学过程
(一)复习提问:
1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)
2. 将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
(二)新课
平行四边形的判定:
方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边分别互相平行,
则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
方法二:两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?
已知:四边形ABCD中,AB=CD,AD=BC
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1)
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
判定一:二组对边分别相等的四边形是平行四边形
∵AB=CD,AD=BC,∴四边形ABCD是平行四边形
练习:课本P85练习题第1题。
方法三:一组对边平行且相等的四边形是平行四边形。
设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?
活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?
设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)
小结:平行四边形判定方法三:
前提:若一个四边形有一组对边平行且相等。
结论:这个四边形是一个平行四边形。
如图用几何语言表达为:
∵AB=CD 且AB∥CD
∴四边形ABCD是平行四边形
平行且相等可用符号“”,读作“平行且相等”。
∵ABCD
∴四边形ABCD是平行四边形
(三)例题讲解:
例1 已知:平行四边形ABCD中,E,F分别在边BC,DA上,且AF=CE。
求证:四边形AECF是平行四边形
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,即AF∥CE.
∵ AF=CE,
∴四边形AECF是平行四边形.
练习:已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:四边形EFGH是平行四边形。
(让学生板演)
图7
小结
今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件。
注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边形的,它是梯形。
作业布置:1.课本。
2.练习册相关内容。
18.2 平行四边形的判定(2、3)
教学目的:
1、掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;
教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。
教学难点:判定定理的证明方法及运用。
教学过程:
一.复习导入
1.用定义法证明一个四边形是平行四边形时,要什么条件?
2.用所学的判定方法一、二判定一个四边形的平行四边形的条件是什么?
3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?
二、新课讲解:
设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么?
活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形。
判定方法三:对角线互相平分的四边形是平行四边形。
这个方法的前提是什么?结论又是什么?
已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。
求证:四边形ABCD是平行四边形。
分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)(3)一组对边平行且相等。
板书证过程。
小结:由刚才证明可得,只要有对角线互相平分,可判定这个四边形是平行四边形。
几何语言表达:
∵OA=OC, OB= OD
∴四边形ABCD是平行四边形
例题讲解:课本P86例2。
分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。
设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么?
A B
已知:在四边形ABCD中,∠A =∠C
∠B=∠D。 D C
求证:四边形ABCD是平行四边形(让学生板书,然后小结)
练习:延长三角形ABC的中线BD至E,
使DE=BD,连结AE、CE,如图,
求证:∠BAE=∠BCE。
证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得∠BAE=∠BCE。
本课小结:目前,我们研究平行四边形的哪些性质和判定:
平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;
平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形。
作业布置:
1、熟记判定定理;
2、课本作业。