2.5 矩形(1)
教学目标
知识与技能:
了解矩形的有关概念,理解并掌握矩形的有关性质.
过程与方法:
经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.
情感态度与价值观:
培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.
重难点、关键
重点:掌握矩形的性质,并学会应用.
难点:理解矩形的特殊性.
关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.
教学准备
教师准备:投影仪,收集有关矩形的图片,制作教具.(图19.2-2)
学生准备:复习平行四边形性质,预习矩形这节内容.
学法解析
1.认知起点:已经学习了三角形、平行四边形,积累了一定的经验的基础上学习本节课内容.
2.知识线索:情境与操作→平行四边形→矩形→矩形性质.
3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.
教学过程
一、联系生活,形象感知
【显示投影片】
教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.
矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).
教师活动:介绍完矩形概念后,为了加深理解也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:
问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问) 学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,是属于平行四边形,因此它具有平行四边形所有性质
问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)
学生活动:由平行四边形对边平行以及刚才变角∠α为90°可以得到∠α的补角也是90°,从而得到矩形四个角都是直角.
评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.
教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).
学生活动:观察发现:矩形的两条对角线相等,口述证明过程是:充分利用(SAS)三角形全等来证明.
口述:∵四边形ABCD是矩形
∴∠ABC=∠DCB=90°,AB=DC 又∵BC为公共边
∴△ABC≌△DCB(SAS)
∴AC=BD
教师提问:AO=_____AC,BO=______BD呢?(,)BO是Rt△ABC的什么线?由此你可以得到什么结论?
学生活动:观察、思考后发现AO=AC,BO=BD,BO是Rt△ABC的中线.由此归纳直角三角形的一个性质:
直角三角形斜边上的中线等于斜边的一半.
直角三角形中,30°角所对的边等于斜边的一半(师生回忆).
【设计意图】采用观察、操作、交流、演绎的手法来解决重点突破难点.
二、范例点击,应用所学
例1 如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=4cm,求矩形对角线的长.(投影显示)
思路点拨:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,可以发现△AOB为等边三角形,这样可求出OA=AB=4cm,∴AC=BD=2OA=8cm.
【活动方略】
教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程(课本P104)
学生活动:参与教师讲例,总结几何分析思路.
【问题探究】(投影显示)
如图,△ABC中,∠A=2∠B,CD是△ABC的高,E是AB的中点,求证:DE=AC.
思路点拨:本题可从E是AB的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.分析可知:可以取BC中点F,也可以取AC的中点G为尝试.
【活动方略】
教师活动:操作投影仪,引导、启发学生的分析思路,教会学生如何书写辅助线.
学生活动:分四人小组,合作探索,想出几种不同的证法.
证法一:取BC的中点F,连结EF、DF,如图(1)
∵E为AB中点,∴EFAC,∴∠FEB=∠A,
∵∠A=2∠B,∴∠FEB=2∠B.DF=BC=BF,
∴∠1=∠B,∴∠FEB=2∠B=2∠1=∠1+∠2,
∴∠1=∠2,∴DE=EF=AC.
证法二:取AC的中点G,连结DG、EG,∵CD是△ABC的高,
∴在Rt△ADC中,DG=AC=AG,
∵E是AB的中点,∴GE∥BC,∴∠1=∠B.
∴∠GDA=∠A=2∠B=2∠1,
又∠GDA=∠1+∠2,∴∠1+∠2=2∠1,
∴∠2=∠1,∴DE=DG=AC.
【设计意图】
补充这道演练题是训练学生的应用能力,提高一题多解的意识,形成几何思路.
三、随堂练习,巩固深化
【探研时空】
已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E.求证:AC=CE.
思路点拨:要证AC=CE,可以考虑∠E=∠CAE,AE平分∠BAD,所以∠DAE=∠BAE,因此,从中发现∠CAE=∠DAE-∠DAC.
另外一个条件是CE⊥BD,这样过A作AF⊥BD于F,则AF∥CE,可以将∠E转化为∠FAE,∠FAE=∠BAE-∠FAE.现在只要证明∠BAF=∠DAC即可,而实际上,∠BAF=∠BDA=∠DAC,问题迎刃而解.
四、课堂总结,发展潜能
1.矩形定义:有一个角是直角的平行四边形叫做矩形,因此,矩形是平行四边形的特例,具有平行四边形所有性质.
2.性质归纳:
(1)边的性质:对边平行且相等.
(2)角的性质:四个角都是直角.
(3)对角线性质:对角线互相平分且相等.
(4)对称性:矩形是轴对称图形.
2.5矩形(2)
教学目标
1 使学生掌握矩形的对称性,并会利用矩形的对称性解简单的几何问题。
2 感受矩形的对称美,
3 通过折纸发现矩形的轴对称性,培养学生动手操作的能力,感受知识的产生过称。
重点、难点:
重点:矩形的对称性的产生过程及应用
难点:矩形的轴对称性的证明和应用。
教学过程
一 创设情景,导入新课
1 复习:
(1)什么叫轴对称图形?怎样判断两点A,B关于直线l对称。
如果一个图形沿着某条直线对折,直线两旁的部分能够完全重合,那么这个图形叫轴对称图形.
连结A、B,如果直线l垂直AB且平分AB,那么点A、B关于直线l对称。
(2)什么叫矩形?矩形和平行四边形对比,共同的性质是什么?矩形独特的性质是什么?
有一个角是直角的平行四边形叫矩形。
矩形和平行四边形共同的性质是:对边平行、对角相等,对角线互相平分。
矩形独特的性质是:矩形的对角线相等,矩形是四个角是直角。
(3)怎样判断一个四边形是矩形?
A 如果一个四边形是平行四边形,可以判断其中有一个角是直角或对角线相等。
B 如果一个四边形有一个角是直角,或对角线相等,可以判断它是平行四边形
2 矩形具有哪些对称性呢?这节课我们来学习这个问题。
二 合作交流,探究新知
1 矩形的轴对称性
(1)做一做:在纸上画一个矩形ABCD,把它剪下来。
①先沿着矩形的对角线所在直线折叠,观察对角线两旁的部分能否重合?由此你发现什么?(矩形的对角线所在直线不是矩形的对称轴)
②怎样折叠才能使折痕两旁的部分互相重合呢?试试看,你有几种方法?由此你发现了什么?
矩形是轴对称图形,过每一组对边的中点的直线都是矩形的对称轴。
(2)想一想:矩形为什么是轴对称图形,过每一组对边中点的直线为什么都是矩形的对称轴?你能说出理由吗?(交流讨论)
分析:设E、F、M、N分别是AB,CD,AD,BC的中点。要判断矩形关于直线EF对称,只需要判断点A、点B关于直线EF对称就可以了,怎样判断点A、点B关于直线EF对称呢?(交流讨论)(只需要判断直线EF垂直平分线段AB,)怎样判断直线EF垂直平分线段AB呢?
(∵四边形ABCD是矩形,∴OA=AC=OB=BD,
又∵E是AB的中点 ∴EF垂直平分AB),你能写出证明过程吗?
解:∵四边形ABCD是矩形,∴OA=AC=OB=BD,(矩形的对角线相等且互相平分)
∵E是AB的中点 ∴EF垂直平分AB(等腰三角形底边上的中线和底边上的高互相重合)
∴ 点A、B关于直线EF对称,同理:点C、D关于直线EF对称,
∴矩形关于直线EF对称,同理:矩形关于直线MN对称。
(3)得出结论:矩形是轴对称图形,过每一组对边中点的直线都是矩形的对称轴。
(4)矩形是中心对称图形吗?为什么?(因为矩形是平行四边形,所以矩形也是中心对称图形) 。
结论: 矩形是中心对称图形,对角线的交点是它的对称中心。
2 矩形的两条对称轴把矩形分成的四个小矩形的关系.
观察:矩形的对称轴把矩形分成了四个小矩形,这四个小矩形全等吗?为什么?
∵矩形关于直线EF、MN对称,所以四边形AEOM,EBNO,NOFC,FOMD能够完全重合。因此这四个矩形全等。
三 应用迁移,巩固提高
例 如图,矩形ABCD被它的两条对称轴EF、MN,其中E、F、M、N分别在边AB、DC、AD、BC上,连结ME,EN,NF,FM.,试问:四边形MENF是什么样的四边形?
(交流讨论)
估计学生不难发现四边形MENF是菱形但要讲出道理会有一定的困难,教师引导学生分析:
要判断四边形MENF是菱形,思路1可以先判断四边形ABCD是平行四边形,再判断MN⊥EF,或者判断一组邻边相等。思路2 判断四条边相等。
解:方法1 ∵四边形ABCD是矩形
∴四边形ABCD关于EF,MN对称,
∴OF=OE,OM=ON ∴ 四边形MENF是平行四边形(对角线互相平分的四边形是平行四边形)
∵MN⊥AD,AB⊥AD, ∴MN∥AB,
∵EF⊥AB, ∴EF⊥MN, ∴四边形MENF是菱形。(对角线互相平分且垂直的四边形是菱形)
方法2 ∵四边形ABCD是矩形 ∴四边形ABCD关于EF,MN对称,
∴ MF=ME=NE=NF, ∴四边形MENF是菱形(四条边相等的四边形是菱形)
方法3 连结AC,BD,
∵四边形ABCD是矩形 ∴四边形ABCD关于EF,MN对称,
∴E,N,F,M分别是边AB,BC,CD,DA的中点。MF=ME
∴FN∥DB, FN=DB,ME∥DB,ME=DB
∴四边形MENF是平行四边形
∴四边形MENF是菱形
四 课堂练习,巩固提高
1 如图,EF是四边形ABCD的对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的( )
A B C D
2 矩形ABCD的两条对称轴为EF,MN,其中E、F、M、N分别在AB、DC、AD、BC上,连结ME,EN,NF,FM,AB= cm,BC= cm,则四边形ENFM的周长和面积各是多少?
五 反思小结,拓展提高
这节课你有什么收获?
矩形的性质:(1)与平行四边形相同的性质有哪些?独特的有哪些?
(2)矩形具有哪些对称性?
矩形的判定:如果一个四边形是平行四边形,怎样判定它是矩形?
如果一个四边形的对角线互相垂直,或者邻边相等。怎样判定它是矩形,
2.5 矩形(3)
教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
3.难点的突破方法:
矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形时,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).而其它判定都是以“定义”为基础推导出来的.因此本节课要从复习矩形定义下手,并指出由平行四边形得到矩形只需要添加一个独立条件,然后让学生思考讨论,如果小华做出的是一个平行四边形,再加一个什么条件可以说明它是一个矩形呢?从而导出矩形判定方法.
对于判定方法1,要着重说明这个性质包括两个条件:(1)是平行四边形;(2)两条对角线相等.对于判定2,只要求是四边形即可,因为由有三个角是直角,可以推出四边形是平行四边形,而由对角线相等却推不出四边形是平行四边形.为了加深印象,我们安排了例1,在教学中可以适当地再增加一些判断的题目.
??要让学生知道(1)矩形的判定方法有以下三种:①一个角是直角的平行四边形;②对角线相等的平行四边形;③有三个角是直角的四边形.(2)而由矩形和平行四边形及四边形的从属关系将矩形的判定方法又可分为两类:①从四边形出发必须增加三个特定的独立条件;②从平行四边形出发只需再增加一个特定的独立条件.(3)特别地:①如果所给四边形添加的条件不满足三个的肯定不是矩形;②所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
在教学中,除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
??? (1)有一个角是直角的四边形是矩形; (×)
??? (2)有四个角是直角的四边形是矩形; (√)
??? (3)四个角都相等的四边形是矩形; (√)
?????(4)对角线相等的四边形是矩形; (×)
?????(5)对角线相等且互相垂直的四边形是矩形; (×)
(6)对角线互相平分且相等的四边形是矩形; (√)
(7)对角线相等,且有一个角是直角的四边形是矩形; (×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
??? (9)两组对边分别平行,且对角线相等的四边形是矩形. (√)
指出:
??? (l)所给四边形添加的条件不满足三个的肯定不是矩形;
??? (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2 (补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵ 四边形ABCD是平行四边形,
∴ AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴ BC=(cm).
例3 (补充)??已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,
∴ AD∥BC.
∴ ∠DAB+∠ABC=180°.
又 AE平分∠DAB,BG平分∠ABC ,
∴ ∠EAB+∠ABG=×180°=90°.
∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是( ).
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形
2.已知:如图?,在△ABC中,∠C=90°,?CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
课件23张PPT。2.5矩形两组对边
分别平行四边形平行四边形的性质有:边: 对边平行且相等角:对角相等;邻角互补对角线:对角线互相平分回忆平行四边形是中心对称图形.有一个角是直角的平行四边形叫做矩形.探究新知四边形两组对边
分别平行 平行
四边形一个角
是直角矩形的定义:矩形是轴对称图形吗?如果是,那么有几条对称轴?中心对称图形 矩形还有哪些特殊性质? 矩形有哪些性质?具有平行四边形的所有性质边:矩形的对边平行且相等角:矩形对角相等;邻角互补对角线:矩形对角线互相平分猜想1、矩形的四个角都是直角.矩形的特殊性质:性质1、矩形的四个角都是直角.已知:如图,矩形ABCD.∴ AC=BD.求证:AC=BD. 2: 矩形的对角线相等.性质猜想矩形的特殊性质性质1、矩形的四个角都是直角.性质2、矩形的两条对角线相等.几何语言:∵四边形ABCD是矩形 AC = BD∴∠A=∠B=∠C=∠D=90°矩形的性质
边的性质:
矩形的对边平行且相等.
角的性质:
矩形的四个角都是直角.
对角线的性质:
矩形的对角线相等,且互相平分.ABCDO矩形的对角线把矩形分成四个等腰三角形,其中,相对的两个三角形全等.思考:矩形的两条对角线把矩形分成四个什么三角形?它们之间有什么关系? 1.矩形具有而一般平行四边形不具有的性质是( )
A.对角线相等 B.对边相等
C.对角相等 D.对角线互相平分2.下面性质中,矩形不一定具有的是( )
A.对角线相等 B.四个角相等
C.是轴对称图形 D.对角线互相垂直AD练习1:3、如图,在矩形ABCD中,AC与BD相交于点O,AB=3cm,BC=4cm 则AC= cm,BO= cm,
矩形的周长为 cm,
矩形的面积为 cm252.5 练习1:1412矩形的两条边和对角线构成一个 三角形, 是斜边.
求矩形的边长和对角线的问题可转化为直角三角形,利用 解决.直角对角线勾股定理快速回答
1、已知矩形的两边长分别为8和6,则矩形的对角线长为 .
2、已知矩形的对角线长为3cm,一边长为2cm,则另一边长为 .10例1、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4㎝,求矩形对角线的长? 解:∵ 四边形ABCD是矩形
∴ OA=OB
∵ ∠AOB=60°
∴ △AOB是等边三角形
∴ OA=AB=4(㎝)
∴ 矩形的对角线长 AC=BD=2OA=8(㎝)O如果矩形两对角线的夹角是60°或120°,则其中必有等边三角形.变式:已知矩形的对角线的夹角为1200,对角线长为24cm,则矩形较短的边长为 .12cm例2.已知:在矩形ABCD中,E为BC上一点,∠EAD=∠EDA
求证:E为BC中点.
1、如图,已知四边形ABCD是矩形,
O是对角线AC、BD的交点,点E在
对角线AC上,点F在对角线BD上.
(1)如果 ,则△DOE≌△AOF,(请你填一个式结论成立的条件).
(2)试证明你的结论.
2、已知矩形的对角线长为13,周长为34,求这个矩形的面积.解:设矩形的两边长分别为x,y由题意得:
x2+y2=132 ①
x+y=17 ②
②式两边平方得: x2+y2+2xy=289 ③
xy= 60
因此,这个矩形的面积是602.矩形的性质:对边平行且相等四个角都是直角对角线互相平分 且相等1.矩形的定义矩形是中心对称图形也是轴对称图形3.求矩形的边和对角线的问题常利用直角三角形的知识解决; 4. 矩形的对角线夹角为600或1200时,其中必有等边三角形.小结四边形ABCD是矩形
1.若已知AB=8㎝,AC=10㎝, 则AD= . 矩形的周长= ,矩形的面积= .
2.若∠CAB=40°,则∠OCB=____,
∠OBA=____,∠AOB=_____.
3.若AC=4㎝,∠ACB=600,则BC= ㎝, AB= ㎝.
4. 若已知∠DOC=120°,AD=6㎝.则AC= ㎝.反馈练习:6cm28cm48cm250040010002124A3.如图,用8块相同的长方形地砖拼成一个矩形地面,则每块长方形地砖的长和宽分别是( )
(A)48cm,12cm; (B)48cm,16cm;
(C)44cm,16cm; (D)45cm,15cm.D4.如图:在矩形ABCD中,两条对角线AC、BD相交于点O, AB=OA=4cm.
则BD=____,AD=_____
ABOCD矩形与平行四边形的性质对比两对角线相等且互相平分两条对角线互相平分对角线对角相等,都是90°对角相等角两组对边平行且相等两组对边平行且相等边矩形平行四边形性质再见课件17张PPT。☆ 矩 形 的 判 定 ☆定义:有一个角是直角的平行四边形叫做矩形推论:直角三角形斜边上的中线等于斜边的一半∵∠ACB=90°AD = BD
∴CD = AB复习与回顾矩形的判定定义:有一个角是直角的平行四边形叫做矩形判定定理1 有三个角是直角的四边形是矩形判定定理2 对角线相等的平行四边形是矩形例如:∠A= ∠B= ∠C=90°四边形ABCD是矩形例如:例1
练习
小结判定定理1 有三个角是直角的四边形是矩形证明:∵ ∠A= ∠B= ∠C=90°
∴ ∠A + ∠B = 180°
∠B + ∠C = 180°
∴AD∥BC, AB∥DC
∴四边形ABCD是平行四边形
∵ ∠A=90°
∴四边形ABCD是矩形判定定理2 对角线相等的平行四边形是矩形例1 已知 ABCD的对角线AC、BD交于O,△AOB是
等边三角形,AB = 4cm,求这个平行四边形的面积.1. 对角线相等且一组对边也相等的四边形是矩形.
2. 两条对角线交点到四个顶点距离相等的四边形为矩形.
3. 有一组对边相等,一组对角是直角的四边形是矩形.
4. 有三个角都相等的四边形是矩形. 5. 具备条件____的四边形是矩形. A.两条对角线相等 B.对角线互相垂直
C.一组对角是直角 D.有三个角是直角 6. 能够判断一个四边形是矩形的条件是 A.对角线相等 B.对角线垂直
C.对角线互相平分且相等 D.对角线垂直且相等
判断题选择题( )( )( )( )[ ][ ]课堂练习×√√×CD巩固练习如图,在平行四边形ABCD中,AC与BD 交于O,如图,
①若∠1=∠2,则平行四边形
ABCD是矩形吗?为什么?
②若△AOB是正三角形,
则平行四边形ABCD是矩形
是矩形吗?为什么?
ADBCO)12(
∟∟∟ABCD命题:有三个角是直角的四边形是矩形证明:∵四边形中有三个角是直角
四边形的内角和为360O
∴第四个角也是直角
∴两组对角分别相等且每个角都是直角
∴这个四边形是矩形
按步骤画“边-直角,边-直角,边-直角,边”这样四步画出一个四边形,判断这个四边形是一个矩形吗?说明理由。
议一议:判断下列说法是否正确:
对角线相等的四边形是矩形. ( )
对角线互相平分且相等的四边形是矩形.( )
有一个角是直角的四边形是矩形. ( )
四个角都相等的四边形是矩形.( )
对角线相等且互相垂直的四边形是矩形. ( )
× √ × √ ×某车间生产矩形工件,如图,若你是质检员:
身边只有直尺,你该如何检验它是否合格。
身边只有直角尺,你该如何检验它是否合格。例题练一练(一)下列各句判定矩形的说法是否正确?为什么?
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有四个角是直角的四边形是矩形;
(5)四个角都相等的四边形是矩形;
(6)对角线相等,且有一个角是直角的四边形是矩形;
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;
(8)对角线相等且互相垂直的四边形是矩形.×√√√√×××(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与定
理不同,则需要利用定义和判定定理证明或举反例,
才能下结论.练一练(二)1.已知:矩形ABCD的两条对角线相交于点O,
∠AOD= 120°,AB=4cm.求矩形对角线的长.2.已知平行四边形ABCD的对角线AC和BD相交于
点O,△AOB是等边三角形,AB= 4 cm.求这
个平行四边形的面积.练一练(三)1.已知:四边形ABCD为矩形,PB=PC,求证:PA=PD
2.已知:如图,在平行四边形ABCD中,M为BC中点.
∠MAD=∠MDA.求证:四边形 ABCD是矩形.
MN练一练(三)3.已知:如图,平行四边形ABCD的四个内角平分线相
交于点E,F, G,H.求证:EG=FH.4.已知:如图,在△ABC中,∠C= 90°,CD为中线,
延长CD到点E,使得 DE=CD.连结AE,BE,
则四边形ACBE为矩形.
小 结:矩形的判定方法分两类:
从四边形来判定和从平行四边形来判定.常用的判定方法有三种:
定义和两个判定定理.遇到具体题目,
可根据条件灵活选用恰当的方法.小结:提示:判定一个四边形是矩形,应先认清是任
意四边形,还是平行四边形,然后选择适
当的方法判定。
平行四边形的判定有一个角是直角的平行四边形对角线相等的平行四边形有三个角是直角对角线互相平分且相等