第14章 整式乘除与因式分解 单元同步检测试题(含答案)

文档属性

名称 第14章 整式乘除与因式分解 单元同步检测试题(含答案)
格式 docx
文件大小 211.7KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-12-03 12:20:26

图片预览

文档简介

第十四章《整式的乘法与因式分解》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一、选择题(每题3分,共30分)
1.已知 ,则 的结果为(  )
A.144 B.24 C.25 D.49
2.列计算正确的是(  )
A.(﹣2a3)3=﹣8a6 B.m6÷m2=m3
C.x2008+x2008=2x2008 D.t2 t3=t6
3.把多项式分解因式,应提取的公因式是(  )
A. B. C. D.
4.下列因式分解正确的是(  )
A.x2﹣4=(x+4)(x﹣4) B.x2+2x+1=x(x+2)+1
C.3mx﹣6my=3m(x﹣6y) D.x2y﹣y3=y(x+y)(x﹣y)
5.下列计算中,正确的个数有(  )
①3x3 (﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.
A.1个 B.2个 C.3个 D.4个
6.下列各式中能用平方差公式是(    )
A.(x+y)(y+x) B.(x+y)(y-x)
C.(x+y)(-y-x) D.(-x+y)(y-x)
7. 下列运算正确的是( )
A. B.
C. D.
8. 设,则下列结论:;;;正确的有( )
A. B. C. D.
9. 下列因式分解正确的是( )
A. B.
C. D.
10.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么的值为(  )
A.23 B.24 C.25 D.26
二、填空题(每题3分,共24分)
11. 已知,则的值为________.
12. 计算:______.
13. 因式分解: .
14.已知x+y=10,xy=1,则代数式x2y+xy2的值为_____
15.已知10m=5,10n=7,则102m+n= .
16.若x (m 1)x+36是一个完全平方式,则m的值为 .
17.我们经常利用完全平方公式以及变形公式进行代数式变形.已知关于a的代数式,请结合你所学知识,判断下列说法:①当时,;②无论a取任何实数,不等式恒成立;③若,则;正确的有   .
18.如图,有5个形状大小完全相同的小长方形构造成一个大长方形(各小长方形之间不重叠且不留空隙),图中阴影部分的面积为32,则每个小长方形的对角线为   .
三.解答题(共46分,19题6分,20 ---24题8分)
19.计算:
(1)(-1)2 018+-(3.14-π)0; (2)(2x3y)2·(-2xy)+(-2x3y)3÷2x2;
(3)(2x-3)2-(2x+3)(2x-3); (4)[(a-2b)2+(a-2b)(2b+a)-2a(2a-b)]÷2a.
20.分解因式:
(1)m3n-9mn; (2)(x2+4)2-16x2;
(3)x2-4y2-x+2y; (4)4x3y+4x2y2+xy3.
21.先化简,再求值:
(1)(x2-4xy+4y2)÷(x-2y)-(4x2-9y2)÷(2x-3y),其中x=-4,y=;
(2)(m-n)(m+n)+(m+n)2-2m2,其中m,n满足
22.若a,b,c是△ABC的三边,满足a2(c2﹣a2)=b2(c2﹣b2),判断并说明△ABC的形状.
23.某公园有一块如图所示的长方形空地,计划修建东西、南北走向的两条小路(阴影部分),其余进行绿化,已知长方形空地的长为 米,宽为 米,道路宽都为a米.
(1)求绿化部分的面积(用含a,b的式子表示);
(2)当 , 时,求绿化部分的面积.
24.例如:若,,求的值.
解:因为,所以,即,
又因为,所以.
根据上面的解题思路与方法,解决下列问题:
若,,求的值;
填空:若,则________;
如图,已知正方形的边长为,,分别是,上的点,且,,长方形的面积是,分别以,为边作正方形和正方形,则的值为________.
答案
一、选择题(每题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 D A C D B B A A B D
二、填空题(每题3分,共24分)
11. 16x2﹣1=(4x)2﹣12=(4x﹣1)(4x+1).
故答案为:(4x﹣1)(4x+1).
12.(x﹣1)2﹣x2=x2﹣2x+1﹣x2=﹣2x+1.
故答案为:﹣2x+1.
13. 20212m﹣3n=(2021m)2÷(2021n)3=72÷23=,
故答案为:.
14.10
15.175
16.若x (m 1)x+36是一个完全平方式,则m的值为 .
解析:∵x2 (m 1)x+36是一个完全平方式,
∴m 1=±12,
故m的值为 11或13,
故答案为: 11或13.
17.2,1
【解析】
∵|a﹣2|+b2﹣2b+1=0,
∴|a﹣2|+(b-1)2=0,
∴a-2=0,b-1=0,
∴a=2,b=1.
18.∵正方形的面积等于边长的平方,
∴正方形ABCD的面积为AB2,正方形AEFG的面积为AE2.
∴阴影部分的面积是AB2﹣AE2=(AB+AE)(AB﹣AE).
∵大正方形ABCD和小正方形AEFG的周长和为20,
∴AB+AE=20÷4=5.
∵阴影部分的面积是10,
∴(AB+AE)(AB﹣AE)=10.
∴AB﹣AE=2.
即BE=2.
故答案为2.
三.解答题(共46分,19题6分,20 ---24题8分)
19.解:(1)原式=1+-1=;
(2)原式=4x6y2·(-2xy)-8x9y3÷2x2=-8x7y3-4x7y3=-12x7y3;
(3)原式=(2x-3)·[(2x-3)-(2x+3)]=(2x-3)·(-6)=-12x+18;
(4)原式=(a2-4ab+4b2+a2-4b2-4a2+2ab)÷2a=(-2a2-2ab)÷2a=-a-b.
20.解:(1)原式=mn(m2-9)=mn(m+3)(m-3);
(2)原式=(x2+4+4x)(x2+4-4x)=(x+2)2(x-2)2;
(3)原式=x2-4y2-(x-2y)=(x+2y)(x-2y)-(x-2y)=(x-2y)(x+2y-1);
(4)原式=xy(4x2+4xy+y2)=xy(2x+y)2.
21.解:(1)原式=(x-2y)2÷(x-2y)-(2x+3y)(2x-3y)÷(2x-3y)=x-2y-2x-3y=-x-5y.
∵x=-4,y=,
∴原式=-x-5y=4-5×=3.
(2)原式=m2-n2+m2+2mn+n2-2m2=2mn.
解方程组

∴原式=2mn=2×3×(-1)=-6.
22.解:∵a2(c2﹣a2)=b2(c2﹣b2),
∴a2(c2﹣a2)﹣b2(c2﹣b2)=0
a2c2﹣a4﹣b2c2+b4=0
c2(a2﹣b2)﹣(a4﹣b4)=0
c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0
(a2﹣b2)(c2﹣a2﹣b2)=0,
∴a2﹣b2=0或c2﹣a2﹣b2=0,
∵a,b,c是△ABC的三边,
∴a=b或c2=a2+b2,
∴△ABC是等腰三角形或直角三角形.
23.(1)解:由题意,得

所以绿化部分的面积是 平方米.
(2)解:当 , 时,
原式 ,
所以绿化部分的面积为 平方米.
24.解:,
,即.
又,
,;

由题意得,
设,,则,

又,


或舍.
中小学教育资源及组卷应用平台