首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
人教版(2024)
七年级上册
第一章 有理数
本章复习与测试
七年级数学上册同步压轴专题01 绝对值的三种化简方法(含答案解析)
文档属性
名称
七年级数学上册同步压轴专题01 绝对值的三种化简方法(含答案解析)
格式
docx
文件大小
442.0KB
资源类型
教案
版本资源
人教版
科目
数学
更新时间
2023-12-04 09:26:11
点击下载
图片预览
1
2
3
4
5
文档简介
专题01 绝对值的三种化简方法
绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。
【知识点梳理】
1.绝对值的定义
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|
2.绝对值的意义
①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简:
类型一、利用数轴化简绝对值
例1.有理数a、b、c在数轴上位置如图,则的值为( ).
A. B. C.0 D.
例2.有理数,在数轴上对应的位置如图所示,那么代数式的值是( )
A.-1 B.1 C.3 D.-3
【变式训练1】已知,数、、的大小关系如图所示:化简____.
【变式训练2】有理数a、b、c在数轴上的位置如图.
(1)判断正负,用“>”或“<”填空: , , .
(2)化简:
【变式训练3】有理数,在数轴上的对应点如图所示:
(1)填空:______0;______0;______0;(填“<”、“>”或“=”)
(2)化简:
【变式训练4】有理数a、b、c在数轴上的位置如图:
(1)用“>”或“<”填空a_____0,b_____0,c﹣b______0,ab_____0.
(2)化简:|a|+|b+c|﹣|c﹣a|.
类型二、利用几何意义化简绝对值
例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索
(1)求|5-(-2)|=________;
(2)同样道理|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,则x=________;
(3)类似的|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是__________.
(4)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
【变式训练1】阅读下面的材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:
①如图2,点A、B都在原点的右边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
②如图3,点A、B都在原点的左边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
③如图4,点A、B在原点的两边:
∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,
综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;
(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2, 那么x为__________.
(3)当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是__________.
【变式训练2】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为 ,表示数y与﹣1两点之间的距离可以表示为 .
(2)如果表示数a和﹣2的两点之间的距离是3,那么a= ;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
(3)当a= 时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是 .
【变式训练3】(问题提出)的最小值是多少?
(阅读理解)为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离,那么可以看作这个数在数轴上对应的点到1的距离;就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值.
我们先看表示的点可能的3种情况,如图所示:
(1)如图①,在1的左边,从图中很明显可以看出到1和2的距离之和大于1.
(2)如图②,在1,2之间(包括在1,2上),看出到1和2的距离之和等于1.
(3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.因此,我们可以得出结论:当在1,2之间(包括在1,2上)时,有最小值1.
(问题解决)
(1)的几何意义是 ,请你结合数轴探究:的最小值是 .
(2)请你结合图④探究的最小值是 ,由此可以得出为 .
(3)的最小值为 .
(4)的最小值为 .
(拓展应用)如图,已知使到-1,2的距离之和小于4,请直接写出的取值范围是 .
类型三、分类讨论法化简绝对值
例1.化简:.
【变式训练1】若,则的值为_________.
【变式训练2】(1)数学小组遇到这样一个问题:若a,b均不为零,求的值.
请补充以下解答过程(直接填空)
①当两个字母a,b中有2个正,0个负时,x= ;②当两个字母a,b中有1个正,1个负时,x= ;③当两个字母a,b中有0个正,2个负时,x= ;综上,当a,b均不为零,求x的值为 .
(2)请仿照解答过程完成下列问题:
①若a,b,c均不为零,求的值.
②若a,b,c均不为零,且a+b+c=0,直接写出代数式的值.
专题01 绝对值的三种化简方法
绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。
【知识点梳理】
1.绝对值的定义
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|
2.绝对值的意义
①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。
3.绝对值的化简:
类型一、利用数轴化简绝对值
例1.有理数a、b、c在数轴上位置如图,则的值为( ).
A. B. C.0 D.
【答案】A
【详解】根据数轴上点的位置得:,且,
则,,,
则.
故选A.
例2.有理数,在数轴上对应的位置如图所示,那么代数式的值是( )
A.-1 B.1 C.3 D.-3
【答案】D
【详解】解:根据数轴可知:-1
∴原式.
故选:D.
【变式训练1】已知,数、、的大小关系如图所示:化简____.
【答案】
【详解】由数轴可得:b<0,0<a<c,
∴(a+c)>0,(b-a)<0,(a-c)<0,(b-c)<0,
∴a+c-(a-b)-2(c-a)+3(c-b)
=a+c-a+b-2c+2a+3c-3b=2a-2b+2c,
故答案为:2a-2b+2c.
【变式训练2】有理数a、b、c在数轴上的位置如图.
(1)判断正负,用“>”或“<”填空: , , .
(2)化简:
【答案】(1)<,<,>;(2)2c-2b-2a
【详解】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,
(1)b c<0,a+b<0, a+c>0;故答案为:<,<,>;
(2)=c b a-b-a+c=2c-2b-2a.
【变式训练3】有理数,在数轴上的对应点如图所示:
(1)填空:______0;______0;______0;(填“<”、“>”或“=”)
(2)化简:
【答案】(1)<,<,>;(2)
【详解】(1)从数轴可知:,,故答案为:<,<,>;
(2),
.
【变式训练4】有理数a、b、c在数轴上的位置如图:
(1)用“>”或“<”填空a_____0,b_____0,c﹣b______0,ab_____0.
(2)化简:|a|+|b+c|﹣|c﹣a|.
【答案】(1)<,>,>,<;(2)b
【解析】(1)解:由有理数a、b、c在数轴上的位置可知,a<0<b<c,
∴c﹣b>0,ab<0
故答案为:<,>,>,<;
(2)由有理数a、b、c在数轴上的位置可得,
b+c>0,c﹣a>0,
∴|a|+|b+c|﹣|c﹣a|=﹣a+b+c﹣c+a=b.
类型二、利用几何意义化简绝对值
例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索
(1)求|5-(-2)|=________;
(2)同样道理|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,则x=________;
(3)类似的|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是__________.
(4)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
【答案】(1)7;(2);(3)-5,-4,-3,-2,-1,0,1,2;(4)有最小值,最小值为3.
【详解】(1)|5-(-2)|==7,故答案为:7
(2)∵|x+1008|=|x-1005|表示数轴上有理数x所对点到-1008和1005所对的两点距离相等,
∴x所对点为-1008和1005所对点的中点,∴x+1008>0,x-1005<0,
∵|x+1008|=|x-1005|,∴x+1008=-(x-1005),解得:,答案为:
(3)当x+5=0时,x=-5,当x-2=0时,x=2,
当x<-5时,|x+5|+|x-2|=-(x+5)-(x-2)=7,-x-5-x+2=7,解得:x=5(范围内不成立,舍去)
当-5≤x<2时,∴|x+5|+|x-2|=(x+5)-(x-2)=7,x+5-x+2=7,7=7,
∵x为整数,∴x=-5,-4,-3,-2,-1,0,1
当x≥2时,∴|x+5|+|x-2|=(x+5)+(x-2)=7,x+5+x-2=7,2x=4,解得:x=2,
综上所述:符合条件的整数为-5,-4,-3,-2,-1,0,1,2,
故答案为:-5,-4,-3,-2,-1,0,1,2
(4)∵|x-3|+|x-6|表示数轴上有理数x所对点到3和6所对的两点距离之和,
∴由(2)得3≤x≤6时|x-3|+|x-6|的值最小,
∴|x-3|+|x-6|=x-3-(x-6)=3,∴|x-3|+|x-6|有最小值,最小值为3.
【变式训练1】阅读下面的材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:
①如图2,点A、B都在原点的右边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
②如图3,点A、B都在原点的左边:
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
③如图4,点A、B在原点的两边:
∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,
综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;
(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2, 那么x为__________.
(3)当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是__________.
【答案】(1)3,3,4;(2),1或-3;(3)
【解析】(1)解:数轴上表示2和5的两点之间的距离为,
数轴上表示-2和-5的两点之间的距离为,
数轴上表示1和-3的两点之间的距离为;
故答案为:3,3,4;
(2)解:数轴上表示x和-1的两点A和B之间的距离是,
根据题意得,即,所以x=1或-3,
故答案为,1或-3;
(3)解:代数式∣x+1∣+∣x-2∣可以看成x到-1和2的距离和,只有在-1和2之间才会有最小距离3,所以x的取值为,
故答案为:.
【变式训练2】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为 ,表示数y与﹣1两点之间的距离可以表示为 .
(2)如果表示数a和﹣2的两点之间的距离是3,那么a= ;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;
(3)当a= 时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是 .
【答案】(1)3,5,|x-5|,|y+1|;(2)1或-5;|a+4|+|a-2|=6;(3)1,9.
【详解】(1)数轴上表示4和1的两点之间的距离是4-1=3;表示-3和2两点之间的距离是2-(-3)=5;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m-n|.那么,数轴上表示数x与5两点之间的距离可以表示为|x-5|,表示数y与-1两点之间的距离可以表示为|y+1|.
故答案为:3,5,|x-5|,|y+1|;
(2)如果表示数a和-2的两点之间的距离是3,那么|a-(-2)|=3,
∴|a+2|=3,∴a+2=3或a+2=-3,解得a=1或a=-5;
∵|a+4|+|a-2|表示数a与-4的距离与a和2的距离之和,
若数轴上表示数a的点位于-4与2之间,则|a+4|+|a-2|的值等于2和-4之间的距离,等于6.
即|a+4|+|a-2|=6,故答案为:1或-5;
(3)|a+5|+|a-1|+|a-4|表示一点到-5,1,4三点的距离的和,
∴当a=1时,该式的值最小,最小值为6+0+3=9.
∴当a=1时,|a+5|+|a-1|+|a-4|的值最小,最小值是9.故答案为:1,9.
【变式训练3】(问题提出)的最小值是多少?
(阅读理解)为了解决这个问题,我们先从最简单的情况入手.的几何意义是这个数在数轴上对应的点到原点的距离,那么可以看作这个数在数轴上对应的点到1的距离;就可以看作这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究的最小值.
我们先看表示的点可能的3种情况,如图所示:
(1)如图①,在1的左边,从图中很明显可以看出到1和2的距离之和大于1.
(2)如图②,在1,2之间(包括在1,2上),看出到1和2的距离之和等于1.
(3)如图③,在2的右边,从图中很明显可以看出到1和2的距离之和大于1.因此,我们可以得出结论:当在1,2之间(包括在1,2上)时,有最小值1.
(问题解决)
(1)的几何意义是 ,请你结合数轴探究:的最小值是 .
(2)请你结合图④探究的最小值是 ,由此可以得出为 .
(3)的最小值为 .
(4)的最小值为 .
(拓展应用)如图,已知使到-1,2的距离之和小于4,请直接写出的取值范围是 .
【答案】(1)a这个数在数轴上对应的点到4和7两个点的距离之和,3;(2)2,2;(3)6;(4)1021110;拓展应用 .
【详解】(1)的几何意义是a这个数在数轴上对应点到4和7两个点的距离之和;
当a在4和7之间时(包括4,7上),
可以看出a到4和7的距离之和等于3,此时取得最小值是3;
故答案为:a这个数在数轴上对应的点到3和6两个点的距离之和,最小值是3.
(2)当a取中间数2时,绝对值最小,的最小值是1+0+1=2;
如图所示:
故答案为:2,2;
(3)当a取最中间数时,绝对值最小,
的最小值是 ;
(4)当a取中间数1011时,绝对值最小,的最小值为:
1010+1009+1008+1007+……+1+0+1+2+3+……+1010=;
拓展应用
∵a使它到-1,2的距离之和小于4,∴,
∴①当时,则有,解得:,∴;
②当 时,则有,∴,
③当时,则有,解得:,∴,
综上:,数轴上表示如下:
类型三、分类讨论法化简绝对值
例1.化简:.
【答案】
【解析】试题解析:①当时,原式
②当时,原式
③当时,原式
④当时,原式
综上所述:
【变式训练1】若,则的值为_________.
【答案】0或2或4
【详解】∵,
∴a、b、c三个数中必定是一正两负,
∴当时,,此时
当时,,此时
当时,,此时
故答案为:0或2或4
【变式训练2】(1)数学小组遇到这样一个问题:若a,b均不为零,求的值.
请补充以下解答过程(直接填空)
①当两个字母a,b中有2个正,0个负时,x= ;②当两个字母a,b中有1个正,1个负时,x= ;③当两个字母a,b中有0个正,2个负时,x= ;综上,当a,b均不为零,求x的值为 .
(2)请仿照解答过程完成下列问题:
①若a,b,c均不为零,求的值.
②若a,b,c均不为零,且a+b+c=0,直接写出代数式的值.
【答案】(1)①2,②0,③-2,2或0或-2;(2)①1或3或-3或-1;②-1或1
【详解】(1)①∵a、b都是正数,∴=a, =b,∴=1+1=2,
故答案为:2;
②设a是负数,b是正数,∴=-a,=b,∴=-1+1=0,故答案为:0;
③∵a、b都是负数,∴=-a, =-b,∴=-1-1=-2,故答案为:-2;
综上,当a,b均不为零,求x的值为2或0或-2;
(2)①由题意可得:a、b、c的符号分为四种情况:
当a、b、c都是正数时,=1+1-1=1,
当a、b、c为两正一负且a、b为正c为负时,=1+1+1=3,
当a、b、c为一正两负且a、b为负c为正时,=-1-1-1=-3,
当a、b、c都是负数时,=-1-1+1=-1,
综上,的值为1或3或-3,或-1;
②∵a,b,c均不为零,且a+b+c=0,
∴=,
∴当a、b、c为两正一负时,=-1-1+1=-1,
当a、b、c为一正两负=-1+1+1=1,
综上,的值为-1或1.
点击下载
同课章节目录
第一章 有理数
1.1 正数和负数
1.2 有理数
1.3 有理数的加减法
1.4 有理数的乘除法
1.5 有理数的乘方
第二章 整式的加减
2.1 整式
2.2 整式的加减
第三章 一元一次方程
3.1 从算式到方程
3.2 解一元一次方程(一)——合并同类项与移项
3.3 解一元一次方程(二)——去括号与去分母
3.4 实际问题与一元一次方程
第四章 几何图形初步
4.1 几何图形
4.2 直线、射线、线段
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒
点击下载
VIP下载