1.2.1 有理数

文档属性

名称 1.2.1 有理数
格式 rar
文件大小 23.6KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2008-09-06 16:58:00

图片预览

文档简介

1.2.1 有理数
教学任务分析
教学目标 知识技能 理解有理数的含义,能够把给出的有理数分类、了解0在有理数分类中的作用.
数学思考 经过本节课的学习,使学生树立分类讨论的观点和能够正确地进行分类的能力.
解决问题 培养学生独立发现问题、分析问题、解决问题的能力.
情感态度 通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.
重点 会把所给的有理数进行正确的分类
难点 掌握两种有理数的分类方法
教学流程安排
活动流程图 活动内容和目的
一、提出问题 二、初步分析解决问题三、知识应用,拓展创新四、作业 创设问题情景,复习所学知识,同时引出新的问题――有理数的分类.解决问题,引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.培养学生灵活的思维能力.巩固新知
教学过程设计
1、 创设问题情景
复习所学知识,同时引出新的问题――有理数的分类.
问题1: 有了负数以后,我们学过的数有哪些?
学生活动设计:学生根据所学内容,回忆所学过的数,同时举出相应的例子,一可以让学生复习旧的知识,二可以在所提问题中发现新的知识
学生举例:1,2,-1,-3,,0等
问题2: 在上述列举的数中,我们可以怎样进行分类?
学生活动设计:学生根据数的特征进行分类,显然可以把小学学过的数(正数)分成一类――正数,把正数前面加负号(负数)的数分成一类――负数,0既不是正数也不是负数;也可以分成整数和分数,于是有下列分类:
正整数,如:1、2、3... 零:0 负整数:-1,-2,-3...
正分数: 负分数:
教师活动设计:
引导学生理解有理数以及有理数的分类:正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.
2、 解决问题
引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.
问题3: 如何对有理数进行分类?
学生活动设计:根据以上知识学生进行分类.

把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,所有整数组成的数集叫做整数集.
问题4: 你能解决下列问题吗?谈谈你的看法?
(1) 0是整数吗?是正数吗?是有理数吗?
(2) -5是整数吗?是负数吗?是有理数吗?
(3) 自然数是整数吗?是正数吗?是有理数吗?
(4) 下列有理数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
-7、10.1、89、0、-0.67、、
〔解答〕(1)0是整数、不是正数但是有理数(2)-5是整数、负数、有理数
(3)自然数是整数,不是所有的自然数是正数(比如0),所有的自然数都是有理数
(4)整数:-7、89、0 分数:10.1、-0.67、、 正数:10.1、89、
负数:-7、-0.67、
学生活动设计:学生独立思考上述问题,必要时进行适当的讨论,然后学生进行适当的交流,个别同学在交流中逐步完善自己对问题的看法.
三、知识应用,拓展创新
我们已经能够对有理数进行合理的分类,共有两种分类方法,下面我们就利用这两种分类方法解决下列问题.
问题5:把下列各数填在表示相应集合的大括号中:
+6、-8、25,-0.4,0,-,9.15,
整数集合 ;分数集合 ; 非负数集合 ;正数集合 ;负数集合 .
解:整数集合
分数集合
非负数集合
正数集合
负数集合
学生活动设计:(1)把一些数看作一个整体,那么这个整体就叫这些数的集合.其中的每一个数叫做这个集合的一个元素.(2)特别要注意“零”是整数集合、非负数集合、有理数集合中的一个元素;“零”不仅表示“没有”而且具有非常确定的内容,如零时、零度;“零”是正负数的界限;“零”是偶数;“零”能被任何非零数整除;“零”也是一个不可缺少的数码;在数的表示中起着十分重要的作用.(3)非负有理数包括正有理数和零,在数学里,“正”和“整”不能通用,是有区别的;正相对于负来说;整数是相对于分数而言的.
问题6:如图,大圆覆盖的区域表示有理数的范围,中圆覆盖的区域表示整数的范围,小圆覆盖的区域表示正整数的范围.小圆和中圆把大圆覆盖的区域分割为无公共部分的A、B、C三个部分,
那么
(1)A、B、C分别表示什么区域?
(2)请将下列各数填入相应的区域内:
-7.3、-4、、0、+2.4、+3、+5、
学生活动设计:学生认真读题,仔细分析问题所涉及的细节,分析出A区域表示的数是有理数但不是整数,从而得到A区域表示的数应该是分数,B区域表示的数是整数但不是正整数,从而得到B区域应该是非正整数(0和负整数),C区域显然是正整数,问题(1)解决.
有了以上分析问题(2)容易解决.
教师活动设计:引导学生进行自主分析问题,在分析问题的过程抓住细节,启发学生进行解决问题,在学生没有思路时进行适当的提示等.
四、小结和作业
小结:
1. 本节内容:有理数以及分类.
2. 重点内容:有理数的两种分类方法、能够对所给的数进行分类.
作业:
P10 练习 P17 习题1.2 1