14.3.2.1 运用平方差公式因式分解课件(共26张PPT)

文档属性

名称 14.3.2.1 运用平方差公式因式分解课件(共26张PPT)
格式 ppt
文件大小 2.4MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2023-12-03 20:07:37

图片预览

文档简介

(共26张PPT)
14.3.2 公式法
第十四章 整式的乘法与因式分解
第1课时 运用平方差公式因式分解
学习目标
了解平方差公式的特点,会用平方差公式分解因式.
重点:正确熟练地运用公式法进行因式分解.
难点:灵活运用多种方法进行因式分解.
课前预习
知识点一:用平方差公式分解因式
(1)平方差公式:a2-b2=(a+b)(a-b).
即两个数的   ,等于这两个数的和与这两个数的差的   .

(2)因式分解与整式乘法的关系:
a2-b2 (a+b)(a-b)
 积 
 平方差  
知识点二:用平方差公式分解因式的步骤
(1)用平方差公式分解因式时,首先将式子写成两个数的平方差的形式,然后分解.

(2)若多项式中有公因式,一定要先   , 再用平方差公式分解因式.
 提公因式  
新课导入
在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b)(如图左下图所示).把余下的部分恰好剪拼成一个矩形(如图右下图所示),通过计算两个图形(阴影部分)的面积,可以得到一个怎样的等式
右图中阴影部分为矩形(长为a+b,宽为a-b),面积为(a+b)(a-b).因此(a+b)(a-b)=a2-b2或a2-b2=(a+b)(a-b),(a+b)(a-b)=a2-b2是乘法公式,而反过来a2-b2=(a+b)(a-b)这是因式分解的另一种方法——公式法.
通过图形可以知道,右图是由左图拼成的,它们的面积相等,左图中阴影部分的面积为a2-b2;
用平方差公式进行因式分解

想一想:多项式a2-b2有什么特点?你能将它分解因式吗?
是a,b两数的平方差的形式
)
)(
(
b
a
b
a
-
+
=
2
2
b
a
-
)
)(
(
2
2
b
a
b
a
b
a
-
+
=
-
整式乘法
因式分解
两个数的平方差,等于这两个数的和与这两个数的差的乘积.
平方差公式:
新知讲解


×
×
辨一辨:下列多项式能否用平方差公式来分解因式,为什么?


★符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成: ( )2-( )2的形式.
两数是平方,
减号在中央.
(1)x2+y2
(2)x2-y2
(3)-x2-y2
-(x2+y2)
y2-x2
(4)-x2+y2
(5)x2-25y2
(x+5y)(x-5y)
(6)m2-1
(m+1)(m-1)
例1 分解因式:
a
a
b
b
(
+
)
(
-
)
a2 - b2 =
解:(1)原式=
2x
3
2x
2x
3
3
(2)原式
a
b
典例分析
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.
分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
针对训练
=(2m+4n)(4m+2n)
解:(1)原式=(a+b-2a)(a+b+2a)
=(b-a)(3a+b);
(2)原式=(3m+3n-m+n)(3m+3n+m-n)
=4(m+2n)(2m+n).
若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解.
)
)(
(
2
2
b
a
b
a
b
a
-
+
=
-
20152-20142 =
(2mn)2 - ( 3xy)2 =
(x+z)2 - (y+p)2 =
例2 分解因式:
解:(1)原式=(x2)2-(y2)2
=(x2+y2)(x2-y2)
分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解.
=(x2+y2)(x+y)(x-y);
(2)原式=ab(a2-1)
分解因式时,一般先用提公因式法进行分解,然后再用公式法.最后进行检查.
=ab(a+1)(a-1).
方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.注意分解因式必须进行到每一个多项式都不能再分解因式为止.
分解因式:
(1)5m2a4-5m2b4; (2)a2-4b2-a-2b.
针对训练
=(a+2b)(a-2b-1).
=5m2(a2+b2)(a+b)(a-b);
解:(1)原式=5m2(a4-b4)
=5m2(a2+b2)(a2-b2)
(2)原式=(a2-4b2)-(a+2b)
=(a+2b)(a-2b)-(a+2b)
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
∴x-y=-2②.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①,
联立①②组成二元一次方程组,
解得
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题:
(1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400;
(2)原式=4(53.52-46.52)
=4(53.5+46.5)(53.5-46.5)
=4×100×7=2800.
方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.
例5 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除.
即多项式(2n+1)2-(2n-1)2一定能被8整除.
证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n 2=8n,
∵n为整数,
∴8n被8整除,
方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除.
1.下列多项式中能用平方差公式分解因式的是(  )
A.a2+(-b)2 B.5m2-20mn
C.-x2-y2 D.-x2+9
D
2.分解因式(2x+3)2 -x2的结果是(  )
A.3(x2+4x+3) B.3(x2+2x+3)
C.(3x+3)(x+3) D.3(x+1)(x+3)
D
3.若a+b=3,a-b=7,则b2-a2的值为(  )
A.-21 B.21 C.-10 D.10
A
随堂练习
4.把下列各式分解因式:
(1) 16a2-9b2=_________________;
(2) (a+b)2-(a-b)2=_________________;
(3) 9xy3-36x3y=_________________;
(4) -a4+16=_________________.
(4a+3b)(4a-3b)
4ab
9xy(y+2x)(y-2x)
(4+a2)(2+a)(2-a)
5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值是_____________.
4
6.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.
原式=-40×5=-200.
解:原式=(m+2n+3m-n)(m+2n-3m+n)
=(4m+n)(3n-2m)
=-(4m+n)(2m-3n),
当4m+n=40,2m-3n=5时,
7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积.
解:根据题意,得
6.82-4×1.62
=6.82- (2×1.6)2
=6.82-3.22
=(6.8+3.2)(6.8 - 3.2)
=10×3.6
=36 (cm2)
答:剩余部分的面积为36 cm2.
8. (1)992-1能否被100整除吗?
解:(1)因为 992-1=(99+1)(99-1)=100×98,
所以,(2n+1)2-25能被4整除.
(2)n为整数,(2n+1)2-25能否被4整除?
所以992-1能否被100整除.
(2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4)
=2(n+3) ×2(n-2)=4(n+3)(n-2).
平方差公式分解因式
公式
a2-b2=(a+b)(a-b)
步骤
一提:公因式;
二套:公式;
三查:多项式的因式分解有没有分解到不能再分解为止.
课堂小结
本课结束
*
*