4.8 图形的位似 同步练习
一、选择题
1.如图,在平面直角坐标系中,每个小方格的边长均为1.△AOB与△A'OB'是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是( )
A.(﹣2,1) B.(﹣2,) C.(﹣2,) D.(﹣2,)
2.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,0),B(3,0),C(4,2),以点A为位似中心在的同侧画△AEF,使△AEF与△ABC成位似图形,且相似比为2:1,则△AEF的面积为( )
A.4 B.6 C.8 D.10
3、如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是( )
A.1:8 B.1:6 C.1:4 D.1:2
4、如图所示,按如下方法将△ABC的三边缩小为原来的,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,则下列说法:
(1)△ABC与△DEF是位似形.
(2)△ABC∽△DEF.
(3)△ABC与△DEF周长的比为2∶1
(4)△ABC与△DEF面积的比为4∶1.其中正确的个数是( )
A.1 B.2 C.3 D.4
5、如图,△ABC与△DEF位似,点O为位似中心,且B为OE的中点,则△ABC与△DEF的面积比为( )
A.1:2 B.1:3
C.1:4 D.1:5
6、如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为( )
A.8 B.9
C.10 D.15
7.如图,与位似,点O是位似中心.若,与的周长差为,则的周长为( )
A. B. C. D.
8.如图四个图中,均与相似,且对应点交于一点,则与成位似图形的有( )
A.1个 B.2个 C.3个 D.4个
9、如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为( )
(0,0) B.(0,1)
C.(﹣3,2) D.(3,﹣2)
10、在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是( )
A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR
二、填空题
1.在平面直角坐标系中,以原点为位似中心,将放大为原来的2倍得到,若点A的坐标为,则的坐标为 .
2.如图,在平面直角坐标系中,已知点A(-2,4),B(-8,-2),以原点O为位似中心,在y轴的右侧把线段AB缩小为原来的,则点A的对应点A′的坐标是 .
3.在如图所示的网格中,以点为位似中心,四边形的位似图形是 .
4..如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为 .
5.如图,在直角坐标系中,矩形的顶点在坐标原点,边在轴上,在轴上,如果矩形与矩形关于点位似,且矩形的面积等于矩形面积的,那么点的坐标是 .
6.如图,在平面直角坐标系中,每个小正方形的边长均为个单位长度,的顶点坐标分别为,,,的顶点坐标分别为,,,与是以点为位似中心的位似图形,则点的坐标为 .
解答题
1.如图,在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系,并给出了格点△ABC(顶点为网格线的交点).
( 1 )画出△ABC关于y轴对称的△A1B1C1;
( 2 )以点O为位似中心,将△ABC作位似变换得到△A2B2C2,使得A2B2=2AB,画出位似变换后的△A2B2C2 ,并求此时点B2坐标;
( 3 )A1C1和B2C2之间的位置关系为 .
2.如图,在6×8的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.
(1)以O为位似中心,在网格图中作△A'B'C',使△A'B'C'与△ABC位似,且位似比为1:2.(保留作图痕迹,不要求写作法和证明)
(2)若点C的坐标为(2,4),则A'B'= ,点C'的坐标为 ,△A'B'C'的面积= .
3.如图所示,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A,B,E在x轴上.
(1)若点F的坐标为(4.5,3),直接写出点C和点A的坐标;
(2)若正方形BEFG的边长为6,求点C的坐标.
4.如图,BD,AC相交于点P,连接AB,BC,CD,DA,∠DAP=∠CBP.
(1) 求证:△ADP∽△BCP;
(2) 直接回答△ADP与△BCP是不是位似图形;
(3) 若AB=8,CD=4,DP=3,求AP的长.
5.如图,在直角坐标系中,已知△ABC三个顶点的坐标分别为A(3,3),B(4,0),C(0,2).
(1)以点O为位似中心,将△ABC的三边缩小为原来的,得到△A1B1C1,请在y轴的右侧画出△A1B1C1.
(2)在y轴上是否存在点P,使得|B1P-A1P|的值最大 若存在,请求出满足条件的点P的坐标;若不存在,请说明理由.