浦东新区重点中学2023-2024学年高三上学期12月月考
数学试卷
一、填空题(本大题共有12小题,满分54分,第1-6题每题4分,第7-12题每题5分)
1. 已知,,则___________.
2. 过点斜率为的直线l与两坐标轴围成的三角形的面积为___________.
3. 已知在角的终边上,则___________.
4. 已知复数,(i是虚数单位),若是纯虚数,则实数__.
5. 等差数列满足,,则___________.
6. 已知函数(且)恒过定点,则________________.
7. 已知双曲线的渐近线方程为,且右顶点与椭圆的右焦点重合,则这个双曲线的标准方程是___________.
8. 已知正实数x、y满足,则的最小值为___________.
9. 已知抛物线的方程为,过其焦点F的直线交此抛物线于M、N两点,交y轴于点E,若,,则___________.
10. 函数的最大值为__________.
11. 已知等边的边长为,点是其外接圆上的一个动点,则的取值范围是___________.
12. 一个“皇冠”状的空间图形(如图)由一个正方形和四个正三角形组成,并且正方形与每个正三角形所成的二面角的大小均为.如果把两个这样的“皇冠”倒扣在一起,可以围成一个十面体,则的值为______.
二、选择题(本大题共有4小题,满分18分,其中第13、14题每题4分,第14、15题每题5分)
13. 若,则“”是“”的( )条件
A. 充分非必要 B. 必要非充分
C. 充要 D. 既非充分也非必要
14. 设是复数,则下列命题中的假命题是
A 若,则
B. 若,则
C. 若,则
D. 若,则
15. 在正方体中,给出下列四个推断:
①
②
③平面平面
④平面平面
其中正确的推断有( )
A. 1个 B. 2个 C. 3个 D. 4个
16. 已知均为正数,并且,给出下列2个结论:
①中小于1的数最多只有一个;
②中最小的数不小于.则( )
A. ①对,②错 B. ①错,②对
C ①,②都错 D. ①,②都对
三、解答题(本大题共5题,满分78分)
17. 如图,在几何体中,已知平面,且四边形为直角梯形,,,.
(1)求证:平面;
(2)若PC与平面所成角为,求点A到平面的距离.
18. 已知函数,的内角所对的边分别为,,且的外接圆的半径为.
(1)求角的大小;
(2)求面积的最大值.
19. 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为、,山区边界曲线为C,计划修建的公路为,如图所示,M、N为C的两个端点,测得点M到、的距离分别为5千米和40千米,点N到、的距离分别为20千米和2.5千米,以、所在的直线分别为x、y轴,建立平面直角坐标系,假设曲线C符合函数(其中a、b为常数)模型.
(1)求a、b的值;
(2)设公路与曲线C相切于P点,P的横坐标为t.
①请写出公路长度的函数解析式,并写出其定义域;
②当t为何值时,公路长度最短 求出最短长度.
20. 已知椭圆:的左、右焦点分别为、,上顶点为M,过点M且斜率为的直线与椭圆交于另一点N,过原点的直线与椭圆交于P、Q两点.
(1)求周长;
(2)是否存在这样的直线,使椭圆中与直线平行的弦的中点都在上 若存在,求直线的方程;若不存在,请说明理由;
(3)若直线与线段相交,且四边形的面积,求直线的斜率的取值范围.
21. 设是定义域为的函数,如果对任意的,均成立,则称是“平缓函数”.
(1)若,试判断是否为“平缓函数”并说明理由;
(2)已知的导函数存在,判断下列命题的真假:若是“平缓函数”,则,并说明理由.
(3)若函数是“平缓函数”,且是以为周期的周期函数,证明:对任意的,均有.
浦东新区重点中学2023-2024学年高三上学期12月月考
数学试卷 简要答案
一、填空题(本大题共有12小题,满分54分,第1-6题每题4分,第7-12题每题5分)
【1题答案】
【答案】
【2题答案】
【答案】
【3题答案】
【答案】
【4题答案】
【答案】
【5题答案】
【答案】28
【6题答案】
【答案】3
【7题答案】
【答案】
【8题答案】
【答案】8
【9题答案】
【答案】
【10题答案】
【答案】##
【11题答案】
【答案】
【12题答案】
【答案】
二、选择题(本大题共有4小题,满分18分,其中第13、14题每题4分,第14、15题每题5分)
【13题答案】
【答案】A
【14题答案】
【答案】D
【15题答案】
【答案】C
【16题答案】
【答案】A
三、解答题(本大题共5题,满分78分)
【17题答案】
【答案】(1)证明略;(2)点A到平面PCD的距离为.
【18题答案】
【答案】(1)
(2)
【19题答案】
【答案】(1)
(2)①,定义域;②时,千米
【20题答案】
【答案】(1);
(2)存在;;
(3).
【21题答案】
【答案】(1)不是,证明略
(2)真命题证明略
(3)证明略