28.2.1 解直角三角形
教学目标:
知识与技能:
1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3、渗透数形结合的数学思想,培养学生良好的学习习惯.
过程与方法:
通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
情感态度与价值观:
渗透数形结合的数学思想,培养学生良好的学习习惯.
重难点、关键:
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
教学过程:
一、复习旧知、引入新课
【引入】我们一起来解决关于比萨斜塔问题
( http: / / www.21cnjy.com )
见课本在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m.
sin=≈0.0954.
所以∠A≈5°28′.
二、探索新知、分类应用
【活动一】理解直角三角形的元素
【提问】1.在三角形中共有几个元素?什么叫解直角三角形?
( http: / / www.21cnjy.com )
总结:一般地,直角三角形中,除直角外 ( http: / / www.21cnjy.com ),共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
【活动二】直角三角形的边角关系
直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
如果用表示直角三角形的一个锐角,那上述式子就可以写成.
(2)三边之间关系
a2 +b2 =c2 (勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
【活动三】解直角三角形
例1:在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,a=,解这个三角形.
解直角三角形的方法很多,灵活多样,学生 ( http: / / www.21cnjy.com )完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
例2:在Rt△ABC中, ∠B =35°,b=20,解这个三角形(结果保留小数点后一位.
引导学生思考分析完成后,让学生独立完成。
在学生独立完成之后,选出最好方法,教师板书。
总结:完成之后引导学生小结“已知一边一角,如何解直角三角形?”
三、总结消化、整理笔记
本节课应掌握:
1.理解直角三角形的边角之间的关系、边之间的关系、角的关系;
2.解决有关问题;
四、书写作业、巩固提高
(一)巩固练习:课本74页练习
(二)提高、拓展练习:分层作业
五、教学后记
28.2 教直角三角形(2)28.2.2 应用举例(2)
教学目标:
知识与技能:
1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、巩固用三角函数有关知识解决问题,学会解决方位角问题.
过程与方法:
学会这样分析问题.
情感态度与价值观:
体会用三角函数有关知识解决问题,学会解决方位角问题,提高学生的兴趣。
教学重点、难点
重点:用三角函数有关知识解决方位角问题
难点:学会准确分析问题并将实际问题转化成数学模型
教学过程:
一、复习旧知、引入新课
【复习】
1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。
2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线
二、探索新知、分类应用
【活动一】
例5 如图,一艘海轮位于灯 ( http: / / www.21cnjy.com )塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)
( http: / / www.21cnjy.com )
【活动二】巩固练习
1、上午10点整,一渔轮 ( http: / / www.21cnjy.com )在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).
( http: / / www.21cnjy.com )
2、如图6-32,海岛A的周围8海里内 ( http: / / www.21cnjy.com )有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
( http: / / www.21cnjy.com )
【活动三】坡角问题,所用到的“化整为0,积0为整,化曲为直,以直带曲”
例题
利用土埂修筑一条渠道,在埂中间挖去深为 ( http: / / www.21cnjy.com )0.6米的一块(图6-35阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:
①横断面(等腰梯形)ABCD的面积;
②修一条长为100米的渠道要挖去的土方数.
( http: / / www.21cnjy.com )
三、总结消化、整理笔记
利用解直角三角形的知识解决实际问题的一般过程是:
1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题).
2.根据条件的特点,适当选用锐角三角函数等去解直角三角形.
3.得到数学问题的答案.
4.得到实际问题的答案.
四、书写作业、巩固提高
(一)巩固练习:课本77页练习2
(二)提高、拓展练习:分层作业
五、教学后记28.2.2 应用举例(1)
教学目标:
知识与技能:
1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2、逐步培养学生分析问题、解决问题的能力.
3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识。
过程与方法:
1、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
2、注意加强知识间的纵向联系.
情感态度与价值观:
渗透数形结合的数学思想,培养学生良好的学习习惯.
重难点、关键:
重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
难点:实际问题转化成数学模型
教学过程:
一、复习旧知、引入新课
【复习引入】
1、直角三角形中除直角外五个元素之间具有什么关系?请学生口答.
2、在中Rt△ABC中已知a=12,c=13 求角B应该用哪个关系?请计算出来。
二、探索新知、分类应用
【活动一】例1:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角α一般要满足,(如图).现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)
(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角α等于多少(精确到1o) 这时人是否能够安全使用这个梯子。
( http: / / www.21cnjy.com )
引导学生先把实际问题转化成数学模型,然后分析提出的问题是数学模型中的什么量,在这个数学模型中可用学到的什么知识来求未知量?
几分钟后,让一个完成较好的同学示范。
【活动二】课本例3: 2012年6月18 ( http: / / www.21cnjy.com )日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接. “神舟”九号与“天宫”一号的组合体当在离地球表面343km的圆形轨道上运行.如图,当组合体运行到地球表面上P点的正上方时,从中能直接看到的地球表面最远的点在什么位置 最远点与P点的距离是多少 (地球半径约为6 400 km,π取3.142,结果取整数)?
分析:从组合体上能直接看到的地球表面最远的点,应是视线与地球相切时的切点.
如图,⊙O表示地球,点F是飞船的位置,FQ ( http: / / www.21cnjy.com )是⊙O的切线,切点Q是从飞船观测地球时的最远点. 弧PQ的长就是地面上P, Q两点间的距离.为计算弧PQ的长需先求出。
( http: / / www.21cnjy.com )
【活动三】课本例4
热气球的探测器显示,从热气球看一栋高楼顶部 ( http: / / www.21cnjy.com )的仰角为30°,看这栋离楼底部的俯角为60°,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果取整数)
( http: / / www.21cnjy.com )
老师分析:
1、可以先把上面实际问题转化成数学模型,画出直角三角形。
2、在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
三、总结消化、整理笔记
本节课应掌握:
1、把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2、归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
四、书写作业、巩固提高
(一)巩固练习:课本76页练习1、2
(二)提高、拓展练习:分层作业
五、教学后记