5.5用二次函数解决问题
一.选择题
1.向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a≠0),若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
A.第8秒 B.第10秒 C.第12秒 D.第15秒
2.如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y,则此运动员把铅球推出多远( )
A.12m B.10m C.3m D.4m
3.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为( )
A.y=﹣x2+20x B.y=x2﹣20x C.y=﹣x2+10x D.y=x2﹣10x
4.从地面竖直向上先后抛出两个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系式为h(t﹣3)2+40,若后抛出的小球经过2.5s比先抛出的小球高m,则抛出两个小球的间隔时间是( )s.
A.1 B.1.5 C.2 D.2.5
5.用40cm的绳子围成一个的矩形,则矩形面积ycm2与一边长为xcm之间的函数关系式为( )
A.y=x2 B.y=﹣x2+40x C.y=﹣x2+20x D.y=﹣x2+20
6.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t(单位:h),温度为y(单位:℃).当4≤t≤8时,y与t的函数关系是y=﹣t2+10t+11,则4≤t≤8时该地区的最高温度是( )
A.11℃ B.27℃ C.35℃ D.36℃
7.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=a(1+x)2 B.y=a(1﹣x)2 C.y=(1﹣x)2+a D.y=x2+a
8.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B流出,路线近似呈抛物线状,且a.洗手液瓶子的截面图下部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是( )cm.
A.12 B.12 C.6 D.6
9.如果正三角形的边长为x,那么它的面积y与x之间的函数关系是( )
A. B. C. D.
10.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为( )元.
A.24 B.30 C.25 D.35
11.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为( )
A.48m2,37.5m2 B.50m2,32m2
C.50m2,37.5m2 D.48m2,32m2
12.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面3米,则水流下落点B离墙的距离OB是( )
A.2.5米 B.3米 C.3.5米 D.4米
13.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是( )
A.长方形 B.正方形 C.正三角形 D.圆
二.填空题
14.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为,那么该运动员的铅球投掷成绩为 米.
15.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为 min.
16.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为 m.
17.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直的接触地面和门的内壁,并测得AC=2m,则门高OE为 .
18.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽AB=1.6m时,涵洞顶点与水面的距离是2.4m.这时,离开水面1.5m处,涵洞的宽DE为 .
19.汽车在高速公路刹车后滑行的距离y(米)与行驶的时间x(秒)的函数关系式是y=﹣3x2+36x,汽车刹车后,会继续向前滑行直至静止,那么汽车静止前2秒内滑行的距离是 米.
20.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面3m.当水位上涨刚好淹没小孔时,大孔的水面宽度为 m.
21.从地面竖直向上抛出一个小球.小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是h=24t﹣4t2.小球运动的高度最大为 m.
22.如图,假设篱笆(虚线部分)的长度是8m,则所围成矩形ABCD的最大面积是 .
23.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是 ,此时每千克的收益是 .
24.某水果店销售一批水果,平均每天可售出40kg,每千克盈利4元,经调查发现,每千克降价0.5元,商店平均每天可多售出10kg水果,则商店平均每天的最高利润为 元.
三.解答题
25.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:
销售单价x(元/千克) 55 60 65 70
销售量y(千克) 70 60 50 40
(1)求y(千克)与x(元/千克)之间的函数表达式;
(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?
(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?
26.一名男生推铅球,铅球的行进高度y(单位:m)与水平距离x(单位:m)之间的关系为,铅球行进路线如图.
(1)求出手点离地面的高度.
(2)求铅球推出的水平距离.
(3)通过计算说明铅球的行进高度能否达到4m.
27.2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).
(1)写出y与x之间的函数关系式及自变量的取值范围.
(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?
28.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).
(1)求抛物线的表达式;
(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;
(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.
29.某种农副产品的生产成本为8元/千克,售价不低于成本,且不超过20元/千克,根据某农贸市场的销售情况,发现该农副产品一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) … 10000 9400 9200 8560 7600 …
售价x(元/千克) … 12 13.5 14 15.6 18 …
(1)求该农副产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系.
(2)如果该农贸市场某天销售这种农副产品获利48000元,那么这天该农副产品的售价为多少元/千克?
(3)该农贸市场将这种农副产品售价定为多少元/千克时,当天获利最大?最大利润为多少?
答案
一.选择题
C.B.C.B.C.D.A.B.D.C.C.B.D.
二.填空题
14.10.
15.3.75.
16.2.25.
17.m.
18..
19.12.
20.10.
21.36.
22.16.
23.9时,元.
24.180.
三.解答题
25.解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:
,
解得:.
∴y与x之间的函数表达式为y=﹣2x+180.
(2)由题意得:(x﹣50)(﹣2x+180)=600,
整理得:x2﹣140x+4800=0,
解得x1=60,x2=80.
答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.
(3)设当天的销售利润为w元,则:
w=(x﹣50)(﹣2x+180)
=﹣2(x﹣70)2+800,
∵﹣2<0,
∴当x=70时,w最大值=800.
答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.
26.解:(1)令x=0代入,
∴y.
(2),
解得x1=10,x2=﹣2(舍去)
∴铅球推出的水平距离为10米.
(3)把y=4代入,得,
化简得x2﹣8x+28=0,方程无解,
∴铅球的行进高度不能达到4米.
27.解:(1)由图象知,当10<x≤14时,y=640;
当14<x≤30时,设y=kx+b,将(14,640),(30,320)代入得,
解得,
∴y与x之间的函数关系式为y=﹣20x+920;
综上所述,y;
(2)当10<x≤14时W=640×(x﹣10)=640x﹣6400,
∵k=640>0,
∴W随着x的增大而增大,
∴当x=14时,W=4×640=2560元;
当14<x≤30时,W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,
∵﹣20<0,14<x≤30,
∵2560<6480,
∴当x=28时,每天的销售利润最大,最大利润是6480元.
28.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,
∴,
解得:,
∴抛物线解析式为:y=﹣x2+2x+3;
(2)∵点B(3,0),点C(0,3),
∴直线BC解析式为:y=﹣x+3,
如图,过点P作PH⊥x轴于H,交BC于点G,
设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),
∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,
∵S△PBCPG×OB3×(﹣m2+3m)(m)2,
∴当m时,S△PBC有最大值,
∴点P(,);
(3)存在N满足条件,
理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,
∴点A(﹣1,0),
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点M为(1,4),
∵点M为(1,4),点C(0,3),
∴直线MC的解析式为:y=x+3,
如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,
∴点E(﹣3,0),
∴DE=4=MD,
∴∠NMQ=45°,
∵NQ⊥MC,
∴∠NMQ=∠MNQ=45°,
∴MQ=NQ,
∴MQ=NQMN,
设点N(1,n),
∵点N到直线MC的距离等于点N到点A的距离,
∴NQ=AN,
∴NQ2=AN2,
∴(MN)2=AN2,
∴(|4﹣n|)2=4+n2,
∴n2+8n﹣8=0,
∴n=﹣4±2,
∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).
29.解:(1)设销售量y(千克)与该天的售价x(元/千克)之间的函数关系为:y=kx+b,
将点(12,10000)、(18,7600)代入上式得:,解得:,
故销售量y与该天的售价x之间的函数关系为:y=﹣400x+14800(8≤x≤20);
(2)由题意得:(﹣400x+14800)(x﹣8)=48000,
解得:x=32或13,而8≤x≤20,故x=13,
故某天销售这种农副产品获利48000元时的售价为13元/千克;
(3)设销售利润为w元,
由题意得:w=y(x﹣8)=(﹣400x+14800)(x﹣8)=﹣400(x﹣37)(x﹣8),
∵﹣400<0,故w有最大值,
函数的对称轴为:x(37+8)=22.5,而8≤x≤20,
故x=20时,w取得最大值为:﹣400(20﹣37)(20﹣8)=81600,
故售价定为20元/千克时,当天获利最大,最大利润为81600元.