1.2.4 绝对值(1)课件(共16张PPT) 2023-—2024学年人教版数学七年级上册

文档属性

名称 1.2.4 绝对值(1)课件(共16张PPT) 2023-—2024学年人教版数学七年级上册
格式 pptx
文件大小 1.9MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-12-09 09:59:34

图片预览

文档简介

(共16张PPT)
1.2.4 绝对值
第1课时
第一章 有理数
1.理解有理数绝对值的概念及性质,会求一个数的绝对值;
2.已知一个数的绝对值,会求这个数.
活动1:根据情境回答相关问题.
情境1:甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O地出发,分别向东、西方向行驶10 km,到达A,B两处.
问题:它们的行驶路线相同吗?
它们的行驶路程相等吗?
任务一:会求一个数的绝对值
不同,方向不一致
相等,都是10km
-10
10
0
B
A
O
情境2:在所给数轴上画出表示下列各数的点,并说出各点到原点的距离.
5,-1.5,0,1.5,-5
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

5

-1.5

1.5

0

解:点如图所示,
5到原点的距离为5,-1.5到原点的距离是1.5,
0到原点的距离是0,1.5到原点的距离是1.5,
-5到原点的距离是5.
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a| . (这里的数a可以是正数、负数和0).
0
6
-1
-2
-3
-4
-5
-6
1
2
3
4
5
|4|=4
4到原点的距离是4,所以4的绝对值是4,记作|4|=4.
-5到原点的距离是5,所以-5的绝对值是5,记作|-5|=5.
0到原点的距离是0,所以0的绝对值是0,记作|0|=0.
|-5|=5
因为距离不可能是负数,所以数a的绝对值为非负数,即|a|≥0.
活动2:求下列各数的绝对值.
-19, ,0,-2.3,+0.56,-6,+6,  .
解:|-19|=19, ,|0|=0,|-2.3|=2.3,|+0.56|=0.56,|-6|=6,|+6|=6, .
问题1:互为相反数的两个数的绝对值有什么关系?
问题2:上述各数的绝对值与这些数本身有什么关系?
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
0的绝对值是0.
相等
小组讨论:字母a表示一个有理数,你知道a的绝对值等于什么吗
(1)如果a是正数,则|a|=a;
(2)如果a是负数,则|a|=-a;
(3)如果a=0,则|a|=0.
活动3:化简:(1) ;(2) .
解:(1) ; (2) .
去掉绝对值符号时,必须按照“先判后去”的原则,先判断这个数是正数、0或负数,再根据绝对值的意义去掉绝对值符号,总之要确保其结果为非负数且只有一个.
求一个较复杂数的绝对值
练一练
1.判断:
(1)一个数的绝对值等于本身,则这个数一定是正数; ( )
(2)一个数的绝对值等于它的相反数,这个数一定是负数;( )
(3)如果两个数的绝对值相等,那么这两个数一定相等; ( )
(4)如果两个数不相等,那么这两个数的绝对值一定不等;( )
(5)有理数的绝对值一定是非负数. ( )
×
×
×
×

2.填空.
(1)|-4|= ; (2)|+6|= ;
(3)|-(+0)|= ; (4)|-(-2.25)|= ;
(5)+|-1.7|= ; (6)-|-3|= .
4
0
2.25
6
1.7
-3
活动1:根据绝对值的意义完成下面题目.
(1)绝对值等于0的数是_______,
(2)绝对值等于5.25的正数是________,
(3)绝对值等于5.25的负数是________,
(4)如果|x|=2,则x=_________,
(5)如果|x-3|=0,则|x+2|=_________.
任务二:已知一个数的绝对值,会求这个数
0
5.25
-5.25
2或-2
5
绝对值等于某个正数的数有两个,它们互为相反数.
变式:已知|x-4|+|y-3|=0,求x+y的值.
解:根据题意可知:x-4=0,y-3=0,
可得:x=4,y=3,
所以x+y=7.
若几个数的绝对值之和为0,则这个算式中的每个数都为0,即若|a| + |b| +···+ |m|=0,则a=b=···=m=0.
活动2:如果a=-4,且|a|=|b|,求b的相反数.
解:|b|=|a|=|-4|=4,
所以b=4或-4,
当b=4时,-b=-4;
当b=-4时,-b=4;
综上所述:b的相反数是4或-4.
绝对值相等的两个数相等或互为相反数,
即若|a|=|b|,则a=b或a=-b.
1.填空.
(1)若m是-2020的绝对值,那么m的值为 .
(2) 的相反数是 .
(3)-|-3|= .
(4)若|x-1|+|y+3|=0,则y-x= .
2020
-3
-4
2.判断.
(1)一个数的绝对值是4 ,则这数是-4 ( )
(2)|3|>0 ( )
(3)|-1.3|=-|1.3| ( )
(4)有理数的绝对值一定是正数 ( )
(5)若a=-b,则|a|=|b| ( )
(6)若|a|=|b|,则a=b ( )
(7)若|a|=-a,则a必为负数 ( )
(8)互为相反数的两个数的绝对值相等 ( )
×

×
×

×
×

针对本节课关键词“绝对值”,说一说你都学到了哪些知识?
绝对值
概念
性质