(共16张PPT)
第5章
相交线与平行线
5.1 相交线
第1课时
学习目标
1.理解对顶角的概念;
2.掌握对顶角的性质,并能运用它的性质进行角的运算及一
些实际问题.(重点、难点)
观察下列图片,说一说直线与直线的位置关系.
情境引入
问题 剪刀剪东西的过程中,∠AOC和∠BOD这两个角的位置保持怎样的关系?
A
O
C
B
D
∠AOC和∠BOD有公共顶点,且∠AOC的两边分别是∠BOD两边的反向延长线.
对顶角的概念
一
如图直线AB与CD相交于点O,∠1和∠3有公共顶点O,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.∠2和∠4也是对顶角.
对顶角:
A
O
C
B
D
1
3
2
4
总结归纳
判断下列各图中∠1和∠2是否为对顶角,并说明理由?
1
2
1
2
1
2
1
2
1
2
1
2
√
×
×
×
×
×
练一练
请你猜一猜,剪刀剪东西的过程中,∠AOC和∠BOD这两个角的大小保持怎样的关系?
对顶角的性质
二
A
O
C
B
D
动手并思考: 用量角器量一量课本P160页图5.1.2中∠1和∠3的度数,并比较它们的大小关系?你能说明具有这种关系的道理吗?
如图,由∠1+∠2=180°,
∠2+∠3=180°,
可得∠1=∠3.
对顶角相等
A
O
C
B
D
1
3
2
4
例 如图,两条直线相交所形成的四个角中,已知 ∠1=30°,那么∠2、∠3和∠4各等于多少度
解: ∵ ∠1 与∠2互补,(已知)
∴ ∠2=180°-∠1=180°-30°=150°. (互补的定义)
∵ ∠1与∠3, ∠2与∠4分别是对顶角,(已知)
∴ ∠3=∠1=30°, (对顶角相等)
∠4=∠2=150°. (对顶角相等)
典例精析
1.下列说法中,正确的有( )
①对顶角相等
②相等的角是对顶角
③不是对顶角的两个角就不相等
④不相等的角不是对顶角
A.1个 B.2个 C.3个 D.0个
B
当堂练习
2.要测量两堵墙所成的角的度数,但人不能进入围墙,如何测量?
A
B
O
C
D
两个角有公共顶点,且一个角的两边分别是另一个角两边的反向延长线,这样的两个角叫做对顶角.
对顶角性质:对顶角相等.
课堂小结
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
兼职招聘:
https://www.21cnjy.com/recruitment/home/admin中小学教育资源及组卷应用平台
基本 信息 课题 相交线与平行线
时间
来源 华东师大版七年级上册第5章
课型 新授课 授课对象
设计者 谢鹏
目标 确立 依据 课标 摘录 1.理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同 角(或等角)的余角相等、同角(或等角)的补角相等的性质。 2.理解垂线、垂线段等概念,能用三角板或量角器过一点画已知 直线的垂线。 3.能用尺规作图:作一条线段的垂直平分线;过一点作已知直线 的垂线 4.掌握基本事实:同一平面内,过一点有且只有一条直线与已知 直线垂直。 5.理解点到直线的距离的意义,能度量点到直线的距离。 6.识别同位角、内错角、同旁内角。 7.理解平行线的概念。 8.掌握平行线基本事实I:过直线外一点有且只有一条直线与这 条直线平行。 9.掌握平行线基本事实Ⅱ:两条直线被第三条直线所截,如果同 位角相等,那么这两条直线平行。 10.探索并证明平行线的判定定理:两条直线被第三条直线所截, 如果内错角相等(或同旁内角互补),那么这两条直线平行。 11.掌握平行线的性质定理I:两条平行直线被第三条直线所截, 同位角相等。*了解定理的证明 12.探索并证明平行线的性质定理Ⅱ:两条平行直线被第三条直线 所截,内错角相等(或同旁内角互补)。 13.能用三角板和直尺过已知直线外一点画这条直线的平行线。 [1]在尺规作图中,学生应了解作图的原理,保留作图的痕迹,不要求写 出作法。 14.能用尺规作图:过直线外一点作这条直线的平行线。 15.了解平行于同一条直线的两条直线平行。
教材 分析 本章的主要内容是相交线和平行线,采用合情推理与演绎推理有机结合的方式展开.利用合情推理提出猜想,再利用演绎推理证明猜想的正确性. 我们必须认识到几何课程的教育价值,最主要的有两个方面:一方面,几何能培养学生的推理能力;另一方面,几何能培养学生的几何直观能力, 几何直观主要是指利用图形描述和分析问题借助几何直观可以把复杂的数学问题变得简明形象,有助于探索解决问题的思路,预测结果.要有意识地强化对基本图形的运用,不断运用基本图形去发现问题,描述问题,理解结果. 本章对于推理的要求,坚持合情推理与演绎推理的有机结合.即给学生创设充分的自主探索空间,使学生通过动手实践、归纳类比,进行合理的猜想,然后运用演绎推理加以证明.而本章所涉及的演绎推理的层次较为简单,主要是让学生认识、熟悉这一简洁的数学说理过程,训练的要求仅为在已给的数学说理过程中填上适当的理由或数学式. “相交线”一节在点,直线、相交线、线与距离等概念的基础上,让学生通过实例直观感知,操作确认,学习相交线中的一些有关知识.应注意逐步对学生进行一些数学语言的训练,使学生能用一些简单的数学语言叙述图形的某些位置关系,并注意符号的使用.例如“直线AB、CD相交于点O”等. 该节同时创设自主活动的空间,让学生通过观察,动手操作,对相交线中所形成的各个角的位置关系与数量关系进行探索,从对顶角到同位角、内错角、同旁内角,逐渐积累一定的数学活动经验.“平行线”一节在对平行线初步认识的基础上,让学生通过丰富的实例直观感知,操作确认,学会判定平行线的一些方法,并认识平行线的主要性质. 在教学中,应继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述直线的平行关系,并注意平行符号的使用.应注意渗透逻辑推理的思想,让学生认识、熟悉三段论的数学说理格式.同时,必须充分注意到学生学习论证的困难,评价试题的难度不宜超过教材中例题的难度.
学情 分析 1、学生线段,角等有关知识,有了一定的几何认知基础和认知能力。 2、本章节的知识学习对学生思维的推理、分类讨论都有更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续学习产生很大的影响,加深推理书写,逻辑的演绎等训练,强化练习。
节次 5.1 相交线第1课时
学习 目标 1.会用语言描述对顶角的概念; 2.表述对顶角的性质,并能运用它的性质进行角的运算及一些实际问题.
评估 任务 能够用文字语言描述对顶角的概念;掌握对顶角的性质,并能运用它的性质进行角的运算及一些实际问题.
教学过程
学生的学 教师的教 评估要点
情境引入: 观察下列图片,说一说直线与直线的位置关系. 对顶角的概念 问题 剪刀剪东西的过程中,∠AOC和∠BOD这两个角的位置保持怎样的关系? 如图直线AB与CD相交于点O,∠1和∠3有公共顶点O,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.∠2和∠4也是对顶角. 判断下列各图中∠1和∠2是否为对顶角,并说明理由? 对顶角的性质 用量角器量一量课本P160页图5.1.2中∠1和∠3的度数,并比较它们的大小关系?你能说明具有这种关系的道理吗? 如图,由∠1+∠2=180°, ∠2+∠3=180°, 可得∠1=∠3. 对顶角相等 例 如图,两条直线相交所形成的四个角中,已知 ∠1=30°,那么∠2、∠3和∠4各等于多少度 课堂小结: 两个角有公共顶点,且一个角的两边分别是另一个角两边的反向延长线,这样的两个角叫做对顶角. 对顶角性质:对顶角相等.
作业 清单 1.下列说法中,正确的有( )
①对顶角相等
②相等的角是对顶角
③不是对顶角的两个角就不相等
④不相等的角不是对顶角
A.1个 B.2个 C.3个 D.0个 2.要测量两堵墙所成的角的度数,但人不能进入围墙,如何测量?
教学 反思
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)