冀教版七年级下册数学第八章 整式的乘法第3节同底数幂的除法参考教学设计(2份打包)

文档属性

名称 冀教版七年级下册数学第八章 整式的乘法第3节同底数幂的除法参考教学设计(2份打包)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2015-05-02 10:42:55

文档简介

8.3 同底数幂的除法 教学设计(一)
教学设计思路
“问题是思考的开始”,问题的提出是数学教 ( http: / / www.21cnjy.com )学中重要的一环,使学生明确学习内容的必要性,才有可能调动学生解决问题的主动性,促进学生认识能力的提高与发展.而对于生产和生活中的实际问题,学生看得见,摸得着,有的还亲身经历过,所以,当教师提出这些问题时,他们一定会跃跃欲试,想学以致用,这样能起到充分调动学习积极性的作用.
教学目标
知识与技能:
1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.
2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.
过程与方法:
经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力,提高语言表达能力.
情感态度价值观:
感受数学公式的简洁美、和谐美.
重点难点
重点:准确、熟练地运用法则进行计算.
难点:负指数幂的条件及法则的正确运用.
教学过程
1.创设情境,复习导入
前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.
(1)叙述同底数幂的乘法性质.
(2)计算:① ② ③
学生活动:学生回答上述问题.
.(m,n都是正整数)
教法说明:通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.
2.提出问题,引出新知
我国研制的“银河”巨型计算机的运算速度是1 ( http: / / www.21cnjy.com )08次/秒,光计算机(主要由光学运算器、光学存储器和光学控制器组成)的运算速度是108次/秒.光计算机的运算速度是“银河”计算机运算速度的多少倍
怎样计算呢?
这就是我们这节课要学习的同底数幂的除法运算.
3.导向深入,得出性质
做一做(鼓励学生根据幂的意义和除法意义,独立得出结果)
按乘方的意义和除法计算:
(1)
(2)
(3)
(4)
探究:(1)若a≠0,a15÷a5等于什么?
(2)通过上面的计算,对同底数幂的除法运算,你发现了什么规律?
学生思考,回答
师生共同总结:
教师把结论写在黑板上.
请同学们试着用文字概括这个性质:
【公式分析与说明】提出问题:在运算过程当中,除数能否为0?
学生回答:不能.(并说明理由)
由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:
一般地,
这就是说,同底数幂相除,底数不变,指数相减.
尝试证明:
( http: / / www.21cnjy.com )
4.揭示规律
由此我们规定
规律一:任何不等于0的数的0次幂都等于1.
一般我们规定
规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.
5.尝试反馈,理解新知
( http: / / www.21cnjy.com )
(补充)例2 自从扫描隧道电子显微镜发明后 ( http: / / www.21cnjy.com ),便诞生了一门新技术一纳米技术.纳米是长度单位,1 nm (纳米)等于 0.000 000 001 m .请用科学记数法表示 0.000 000 001.
分析:绝对值较小的数可以用一个有一位整数的数与 10 的负指数幕的乘积的形式来表示.
( http: / / www.21cnjy.com )
学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.
教师活动:统计做题正确的人数,同时给予肯定或鼓励.
6.反馈练习,巩固知识
练习一
(1)填空:
① ②
③ ④
(2)计算:
① ②
③ ④
学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.
练习二
下面的计算对不对?如果不对,应怎样改正?
(1) (2)
(3) (4)
学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.
总结、扩展
我们共同总结这节课的学习内容.
学生活动:①同底数幂相除,底数 ,指数 .
②由学生谈本书内容体会.
教法说明:强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.
6.小结
本节主要学习内容:
同底数幂的除法运算性质.
零指数与负整数指数的意义.
用科学记数法表示绝对值较小的数的方法.
幂的运算与指数运算的关系: (m,n都是正整数); (a≠0,m,n都是正整数),即在底数相同的条件下:幂相乘→指数相加,幂相除→指数相减.
注意的地方:
在同底数幂的除法性质及零指数幂与负整数指数幂中,千万不能忽略底数a≠0的条件.
7.布置作业
P78 A组3、4 B组2、3
8.板书设计
8.3同底数幂的除法一、同底数幂的法则 二、例题 练习 例1 (补充)例2证明: (学生板演)8.3 同底数幂的除法 教学设计(二)
教学设计思路
教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.
教学目标
知识与技能
1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.
2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.
过程与方法
在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力.
情感、态度与价值观
1.提高学生观察、归纳、类比、概括等能力;
2.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养.
教学媒体
投影仪
课时安排
1课时
教学重难点
教学重点:同底数幂除法的运算性质及其应用.
教学难点:零指数幂和负整数指数幂的意义.
教学过程
一、创设问题情景,引入新课
一种液体每升含有1012 ( http: / / www.21cnjy.com )个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
[师]1012÷109是怎样的一种运算呢?
通过上面的问题,我们会发现同底数幂的除法运算和现实世界有密切的联系,因此我们有必要了解同底数幂除法的运算性质.
二、了解同底数幂除法的运算及其应用
一起探究:计算下列各式,并说明理由(m>n).
(1)
(2)
(3)
(4)
[师]我们利用幂的意义,得到:
(1)
(2)
(3)
(4)
[生]从以上三个特例,可以归纳出同底数幂的运算性质:am÷an=am-n(m,n是正整数且m>n).
[生]小括号内的条件不完整.在同底数幂 ( http: / / www.21cnjy.com )除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a≠0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.
[师]很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:
(a≠0,m、n都为正整数,且m>n)运用自己的语言如何描述呢?
[生]同底数幂相除,底数不变,指数相减.
[例]计算:
(1) (2) (3) (4)
三、探索零指数幂和负整数指数幂的意义
想一想:
10000=104, 16=24,
1000=10( ), 8=2( ),
100=10( ), 4=2( ),
10=10( ). 2=2( ).
猜一猜
1=10( ), 1=2( ),
0.1=10( ), =2( ),
0.01=10( ), =2( ),
0.001=10( ). =2( )
大家可以发现指数不是我们学过的正整数,而出现了负整数和0.
正整数幂的意义表示几个相同的数相乘,如 ( http: / / www.21cnjy.com )an(n为正整数)表示n个a相乘.如果用此定义解释负整数指数幂,零指数幂显然无意义.根据“猜一猜”,大家归纳一下,如何定义零指数幂和负整数指数幂呢?
[生]由“猜一猜”得
100=1,
10-1=0.1=,
10-2=0.01==,
10-3=0.001==.
20=1
2-1=,
2-2==,
2-3==.
所以a0=1,
a-p=(p为正整数).
[师]a在这里能取0吗?
[生]a在这里不能取0.我们在得出这一结论时,保持了一个规律,幂的值每缩小为原来的,指数就会减少1,因此a≠0.
[师]这一点很重要.0的0次幂,0的负整数次幂是无意义的,就如同除数为0时无意义一样.因为我们规定:a0=1(a≠0);a-p=(a≠0,p为正整数).
我们的规定合理吗?我们不妨假设同底数幂的除法性质对于m≤n仍然成立来说明这一规定是合理的.
例如由于103÷103=1,借助于 ( http: / / www.21cnjy.com )同底数幂的除法可得103÷103=103-3=100,因此可规定100=1.一般情况则为am÷am=1(a≠0).而am÷am=am-m=a0,所以a0=1(a≠0);
而am÷an=(m因此上述规定是合理的.
[例]用小数或分数表示下列各数:
(1)10-3;(2)70×8-2;(3)1.6×10-4.
解:(1)10-3===0.001;
(2)70×8-2=1×=;
(3)1.6×10?-4=1.6×=1.6×0.0001=0.00016.
四、课时小结
[师]这一节课收获真不小,大家可以谈一谈.
[生]我这节课最大的收获是知道了指数还有负整数和0指数,而且还了解了它们的定义:a0=1(a≠0),a-p=(a≠0,p为正整数).
[生]这节课还学习了同底数幂的除法:am ( http: / / www.21cnjy.com )÷an=am-n(a≠0,m,n为正整数,m>n),但学习了负整数和0指数幂之后,m>n的条件可以不要,因为m≤n时,这个性质也成立.
[生]我特别注意了我们这节课所学的几个性质,都有一个条件a≠0,它是由除数不为0引出的,我觉得这个条件很重要.
[师]同学们收获确实不小,祝贺你们!
五、课后作业
课本A组3、4,B组2、3
六、板书设计
同底数幂的除法
一、同底数幂除法的运算及其应用
二、零指数幂和负整数指数幂的意义