(共25张PPT)
15.1.1 从分数到分式
第十五章 分 式
学习目标
1.理解并掌握分式的概念.
2.能正确识别分式是否有意义,并掌握分式值为零的条件.
3.应用分式的概念,解决实际问题.
重点:分式的概念.
难点:分式有意义和值为零的条件.
课前预习
阅读课本P127-128页内容, 了解本节主要内容.
整式含有字母
分母B≠0
分子A=0
分母B≠0
新课导入
8÷9可以写成分数 ,那么y÷x可以写成这样的形式吗?假如你认为可以,那么这个式子是我们以前学习的整式吗?那它是什么式子呢?通过今天的学习,我们会进一步认识它.
分式的概念
一
问题1:请将上面问题中得到的式子分分类:
7
100
a
100
a+1
100
单项式:
多项式:
既不是单项式也不是多项式:
a
100
a+1
100
8a+b
8a+b
整
式
7
100
新知讲解
问题2 :式子
它们有什么相同点和不同点?
相同点
不同点
(观察分母)
从形式上都具有分数 形式
分母中是否含有字母
7
100
a
100
a+1
100
A
B
分子A、分母B都是整式
知识要点
分式的定义
一般地,如果A、B都表示整式,且B中含有字母,那么称 为分式.其中A叫做分式的分子,B为分式的分母.
思考:(1)分式与分数有何联系?
②分数是分式中的字母取某些值的结果,分式更具一般性.
整数
整数
整式
整式
(分母含有字母)
分数
分式
类比思想
特殊到一般思想
①
7
100
a+1
100
整数
分数
整式
分式
有理数
有理式
数、式通性
(2)既然分式是不同于整式的另一类式子,那么它们统称为什么呢?
数的扩充
式的扩充
小试牛刀
1.下列各式哪些是整式?哪些是分式?
整式
整式
分式
整式
分式
整式
分式
整式
分式
整式
归纳:1.判断时,注意含有 的式子, 是常数.
2.式子中含有多项时,若其中有一项分
母含有字母,则该式也为分式,如:
.
分式有意义的条件
二
问题3.已知分式 ,
(1) 当 x=3 时,分式的值是多少
(2) 当x=-2时,你能算出来吗
不行,当x=-2时,分式分母为0,没有意义.
即当x______时,分式有意义.
(3)当x为何值时,分式有意义?
当 x=3 时,分式值为
一般到特殊思想
类比思想
≠-2
新知讲解
对于分式
当_______时分式有意义;
当_______时无意义.
B≠0
B=0
知识要点
分式有意义的条件
例1 已知分式 有意义,则x应满足的
条件是 ( )
A.x≠1 B.x≠2
C.x≠1且x≠2 D.以上结果都不对
方法总结:分式有意义的条件是分母不为零.如果分母是几个因式乘积的形式,则每个因式都不为零.
C
(4)当 时,分式 有意义.
x≠y
(1)当x 时,分式 有意义;
(2)当x 时,分式 有意义;
(3)当b 时,分式 有意义;
(5)当x 时,分式 有意义;
做一做:
为任意实数
想一想:分式 的值为零应满足什么条件?
当A=0而 B≠0时,分式 的值为零.
注意:分式值为零是分式有意义的一种特殊情况.
分式值为零的条件
三
新知讲解
解:当分子等于零而分母不等于零时,分式的值为零.
的值为零.
∴当x = 1时分式
∴ x ≠ -1.
而 x+1≠0,
∴x = ±1,
则 x2 - 1=0,
例2 当x为何值时,分式 的值为零
变式训练
(1)当 时,分式 的值为零.
x=2
【解析】要使分式的值为零,只需分子为零且分母不为零,
∴
解得x=2.
(2)若 的值为零,则x= .
【解析】分式的值等于零,应满足分子等于零,同时分母不为零,即
解得
-3
1.下列代数式中,属于分式的有( )
A. B. C. D.
C
2.当a=-1时,分式 的值( )
A.没有意义 B.等于零
C.等于1 D.等于-1
A
随堂练习
3.当x为任意实数时,下列分式一定有意义的是( )
A.
B.
C.
D.
B
4.已知,当x=5时,分式 的值等于零,则k .
=-10
5.在分式 中,当x为何值时,分式有意义?分式的值为零?
答:当x ≠ 3时,该分式有意义;当x=-3时,该分式的值为零.
6.分式 的值能等于0吗?说明理由.
答:不能.因为 必须x=-3,而x=-3时,分母x2-x-12=0,分式无意义.
分式
定义
值为零的条件
有意义的条件
一般地,如果A,B表示整式,且B中含有字母,式子 叫做分式 ,其中,A叫做分式的分子,B叫做分式的分母.
分式 有意义的条件是B ≠0.
分式 值为零的条件是A=0且B ≠0.
随堂练习
本课结束
*
*