【名师备课】人教版七年级数学上册2.2整式的加减(教学设计+同步测试题,2份)

文档属性

名称 【名师备课】人教版七年级数学上册2.2整式的加减(教学设计+同步测试题,2份)
格式 zip
文件大小 54.4KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-05-03 15:25:27

文档简介

2.2 整式的加减(2课时)
教学任务分析
教学目标 知识技能 理解并掌握合并同类项的概念、去括号法则的探究,能够利用整式的加减法则对整式进行加减运算.
数学思考 能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.
解决问题 (1)能够利用同类项的定义合并同类项;(2)能够利用去括号法则化简;(3)能够利用整式加减法则进行整式的加减运算.
情感态度 通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心.
重点 合并同类项的概念、去括号法则的探究,整式的加减法则.
难点 合并同类项的理解、去括号法则的发现.

教学流程安排
活动流程图 活动内容和目的
一、创设问题情境,激发学生兴趣,引出本节内容. 二、问题引申、探索去添括号法则以及整式的加减法则. 三、应用提高、拓展创新. 四、归纳小结、布置作业. 通过活动1、活动2探究同类项的定义以及合并同类项的方法. 通过活动3、活动4以及做一做,探究、巩固去括号法则. 通过对问题的解决培养学生思维的灵活性以及创新能力. 培养学生的归纳总结能力,巩固新知.
教学过程设计
一、 创设问题情境,激发学生兴趣,引出本节内容
活动1:填空,并解释等式成立的依据.
(1) x+2x+4x-3x=______
(2) 3x2+2x2=_____
(3) 3ab2-4ab2=_______
学生活动设计:
学生自己解决上述问题,然后观察结果,解释等式成立的依据.经过思考可以发现,上述运算可以利用乘法分配率进行,从而把上述多项式进行合并.
教师活动设计:
引导学生在观察的基础上归纳合并同类项的定义:
若两个单项式中所含字母相同,且相同字母的指数也相同,那么这两个单项式叫做同类项.
利用分配率可以把同类项进行合并,合并时把它们的系数相加作为新的系数,而字母部分不变.
所以上述各式计算结果应为(1) x+2x ( http: / / www.21cnjy.com )+4x-3x=(1+2+4-3)x=4x;(2) 3x2+2x2=(3+2)x2=5x2;(3) 3ab2-4ab2=(3-4)ab2=-ab2.
活动2:
1.合并下列各式中的同类项
(1)
(2)
(3)
学生活动设计:
学生独立思考,只需要辨别清楚各个问题中的同类项即可
教师活动设计:
引导学生在解决问题后,分析各个多项式的项,找到同类项并进行合并,进行交流,在交流中纠正一些不正确的想法
解:(1)原式=
(2)原式=
(3)原式=
2.(1)求多项式的值,其中
(2)求多项式的值,其中
分析:在求多项式的值时,可以先将多项式中的同类项合并,然后再求值,这样做往往可以简化计算.
解:(1)原式=-x-2.
当时,原式=
(2)原式=abc.
当时,原式=1.
3. 水库中水位第一天连续下降了a小时,每 ( http: / / www.21cnjy.com )小时平均下降2 cm;第二天连续上升了a小时,每小时平均上升0.5 cm,这两天水位总的变化情况如何?
解:把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化两位-2a cm,第二天水位的变化量为0.5a cm.
两天水位总的变化量为-2a+0.5a=(-2+0.5)a=-1.5a cm.
这两天水位总的变化情况为下降了1.5a cm.
二、 问题引申、探索去添括号法则以及整式的加减法则
活动3:观察下列式子的变形,你能发现什么?
 (1)+120(t-0.5)=+120t-60
 (2)-120(t-0.5)=-120t+60
发现:
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;
括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.
以上为去括号法则,依据是乘法分配率.
做一做:
1.化简下列各式:
(1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b).
2.计算
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b).
解:(1)原式=7x+y;
(2)原式=4a-2b.
3. 做两个长方体纸盒,尺寸如下(单位:cm)
长 宽 高
小纸盒 a b c
大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方厘米?
学生活动设计:
学生自主探索,完成上述两个问题,有困难时可以进行适当的讨论,然后交流,进一步总结归纳整式的加减法则.
经过分析可以发现小纸盒的表面积是(2ab+ ( http: / / www.21cnjy.com )2bc+2ac)cm2;大纸盒的表面积是(6ab+8bc+6ac)cm2;对于问题(1)上述两个多项式作加法(2ab+2bc+2ac)+(6ab+8bc+6ac)=2ab+2bc+2ac+6ab+8bc+6ac=8ab+10bc+8ac;对于问题(2)上述两个多项式作减法(6ab+8bc+6ac)-(2ab+2bc+2ac)=6ab+8bc+6ac-2ab-2bc-2ac=4ab+6bc+4ac.
教师活动设计:
让学生独立完成上述问题,接着引导学生对整式加减法则进行归纳:
几个整式相加,通常用括号把每一个整式括起来,再用加号连接;然后去括号,合并同类项.
活动4:计算
(1)(-x2+3xy-y2)-(-x2+4xy-y2);
(2)(5y+3x-15z2)-(12y-7x+z2).
学生活动设计:
学生自己解决上述问题,进一步体会整式加减的本质--合并同类项.
(1)(-x2+3xy-y2)-(-x2+4xy-y2)
=-x2+3xy-y2+x2-4xy+y2
=-x2+x2+3xy-4xy-y2+y2
=-x2-xy+y2
(2)(5y+3x-15z2)-(12y-7x+z2)
=5y+3x-15z2-12y+7x-z2
=5y-12y+3x+7x-15z2-z2
=-7y+10x-16z2
教师活动设计:
鼓励学生自己根据对多项式的理解解决问题,并分析学生在计算过程中存在的问题(比如去括号的问题等).
三、 应用提高、拓展创新
问题1:求的值,其中.
学生活动设计:
学生独立进行分析,发现可以 ( http: / / www.21cnjy.com )把字母的值直接代入计算,但是过于麻烦,仔细分析可以发现所给的多项式中有同类项,通过合并可以简化形式,再代入求值比较简单.
教师活动设计:
在不同的方法中引导学生利用简单的方法求解,进而培养学生的简化思想.
〔解答〕原式=
   =-3x+y2
当时
原式=-3x+y2=-3×(-2)+=.
问题2:任意取一个两位数,交换个位数字和十位数字的位置得到一个新的两位数,这两个两位数的差是否能够9整除?再研究这两个两位数的和的特点.
学生活动设计:
学生在思考的基础上进行讨论.对于任意一 ( http: / / www.21cnjy.com )个两位数,可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a. 如果要是求这两个数的差,可以列出计算的式子(10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b=9(a-b),显然是9的倍数,若求这两个数的和则有(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b=11(a+b)显然是11的倍数.
教师活动设计:
教师组织学生进行思考、讨论、交流,提醒学生用字母表示数字时的规律,引导学生利用整式的加减运算解决问题.
〔解答〕略
问题3:某花店一枝黄色康乃馨的价格 ( http: / / www.21cnjy.com )是x元,一枝红色玫瑰的价格是y元,一枝白色百合的价格是z元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?
师生活动设计:
第(1)束鲜花的价格为(3x+2y ( http: / / www.21cnjy.com )+z)元;第(2)束鲜花的价格为(2x+2y+3z)元;第(3)束鲜花的价格为(4x+3y+2z)元.这三束花的总价钱为:
(3x+2y+z)+(2x+2y+3z)+(4x+3y+2z)=3x+2y+z+2x+2y+3z+4x+3y+2z=9x+7y+6z(元).
四、 归纳小结、布置作业
小结:同类项的概念;
整式的加减法则 .
作业:习题2.2 .《2.2整式的加减》测试题
一、填空题

1.若单项式与是同类项,则的值是     .

考查说明:此题考查同类项定义.

答案解析:5.由同类项定义得m=3,n=2,所以m+n=3+2=5.

2.已知一个多项式与的和等于,则这个多项式是_________.

考查说明:此题考查多项式的加减运算.

答案与解析:.本题考查整式的加减,由题意列式得-()=.

3.化简:= ____________

考查说明:此题考查多项式的运算,涉及到运算律和去括号法则.

答案与解析: .=

4.若,则的值是_______________.

考查说明:此题考查利用整体思想求代数式的值.

答案与解析:2009.

5. 汛期来临前,滨海区决定 ( http: / / www.21cnjy.com )实施“海堤加固”工程.某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了___________天.

考查说明:此题考查的知识点是列代数式,解题的关键是根据题意先列出原计划用的天数和实际用的天数.

答案与解析:.首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.由已知得:原计划用的天数为,,实际用的天数为,,则完成整个任务的实际时间比原计划时间少用的天数为 .
6.如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为___________.


考查说明:此题考查整式的运算和特殊平行四边形相关的面积问题.

答案与解析: .设去掉的小正方形的边长为x, 由于拼接成的是正方形,所以可得m-x=n+x,x=.

二、解答题

7.化简求值题.

,其中,

考查说明:此题考查多项式的运算和求代数式的值,涉及到运算律和去括号法则.

答案与解析:-12.原式= = .当,时,原式=-12.

8小明在实践课中做了一个长方形模型,模型一边长为,另一边比它小,则长方形模型周长为多少?

考查说明:此题考查了利用多项式的加减解决实际问题的能力.

答案与解析:.长方形一边长为依题意可得另一边为;根据长方形周长定义便可解得.

= ==.