本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第二十七章小结与复习
一、本章学习回顾
1. 知识结构
2.学习要点
(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
3.需要注意的问题
在学习二次函数时,要注重数形结合的思想方法。在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
二、本章复习题
A组
一、填空题
1.已知函数,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.
2.抛物线经过点(3,-1),则抛物线的函数关系式为 .
3.抛物线,开口向下,且经过原点,则k= .
4.点A(-2,a)是抛物线上的一点,则a= ; A点关于原点的对称点B是 ;A点关于y轴的对称点C是 ;其中点B、点C在抛物线上的是 .
5.若抛物线的顶点在x轴上,则c的值是 .
6.把函数的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 .
7.已知二次函数的最小值为1,那么m的值等于 .
8.二次函数的图象在x轴上截得的两交点之间的距离为 .
9.抛物线的对称轴是 ,根据图象可知,当x 时,y随x的增大而减小.
10.已知抛物线的顶点在原点,对称轴是y轴,且经过点(-2,-2),则抛物线的函数关系式为 .
11.若二次函数的图象经过点(2,0)和点(0,1),则函数关系式为 .
12.抛物线的开口方向向 ,顶点坐标是 ,对称轴是 ,与x轴的交点坐标是 ,与y轴的交点坐标是 ,当x= 时,y有最 值是 .
13.抛物线与x轴的两个交点坐标分别为,,若,那么c值为 ,抛物线的对称轴为 .
14.已知函数.当m 时,函数的图象是直线;当m
时,函数的图象是抛物线;当m 时,函数的图象是开口向上,且经过原点的抛物线.
15.一条抛物线开口向下,并且与x轴的交点一个在点A(1,0)的左边,一个在点A(1,0)的右边,而与y轴的交点在x轴下方,写出这条抛物线的函数关系式 .
二、选择题
16.下列函数中,是二次函数的有 ( )
① ② ③ ④
A、1个 B、2个 C、3个 D、4个
17.若二次函数的图象经过原点,则m的值必为 ( )
A、-1或3 B、-1 C、3 D、无法确定
18.二次函数的图象与x轴 ( )
A、没有交点 B、只有一个交点 C、只有两个交点 D、至少有一个交点
19.二次函数有 ( )
A、最大值1 B、最大值2 C、最小值1 D、最小值2
20.在同一坐标系中,作函数,,的图象,它们的共同特点是
(D )
A、都是关于x轴对称,抛物线开口向上
B、都是关于y轴对称,抛物线开口向下
C、都是关于原点对称,抛物线的顶点都是原点
D、都是关于y轴对称,抛物线的顶点都是原点
21.已知二次函数的图象和x轴有交点,则k的取值范围是 ( )
A、 B、且
C、 D、且
22.二次函数的图象可由的图象 ( )
A.向左平移1个单位,再向下平移2个单位得到
B.向左平移1个单位,再向上平移2个单位得到
C.向右平移1个单位,再向下平移2个单位得到
D.向右平移1个单位,再向上平移2个单位得到
23.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去.为了投资少而获利大,每床每晚应提高 ( )
A、4元或6元 B、4元 C、6元 D、8元
24.若抛物线的所有点都在x轴下方,则必有 ( )
A、 B、
C、 D、
25.抛物线的顶点关于原点对称的点的坐标是 ( )
A、(-1,3) B、(-1,-3) C、(1,3) D、(1,-3)
三、解答题
26.已知二次函数.
(1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;
(2)求抛物线与x轴、y轴的交点;
(3)作出函数图象的草图;
(4)观察图象,x为何值时,y>0;x为何值时,y= 0;x为何值时,y<0?
27.已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式.
28.已知二次函数,当x=2时,y有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.
29.已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2.
(1)求二次函数的函数关系式;
(2)设此二次函数图象的顶点为P,求⊿ABP的面积.
30.利用函数的图象,求下列方程(组)的解:
(1); (2).
31.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
B组
一、选择题
32.若所求的二次函数的图象与抛物线有相同的顶点,并且在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小,则所求二次函数的函数关系式为 ( D )
A、 B、
C、 D、
33.二次函数,当x=1时,函数y有最大值,设,(是这个函数图象上的两点,且,则 ( )
A、 B、
C、 D、
34.若关于x的不等式组无解,则二次函数的图象与x轴 ( )
A、没有交点 B、相交于两点
C、相交于一点 D、相交于一点或没有交点
二、解答题
35.若抛物线的顶点在x轴的下方,求m的值.
36.把抛物线的图象向左平移3个单位,再向下平移2个单位,所得图象的解析式是,求m、n.
37.如图,已知抛物线,与x轴交于A、B,且点A在x轴正半轴上,点B在x轴负半轴上,OA=OB,
(1)求m的值;
(2)求抛物线关系式,并写出对称轴和顶点C的坐标.
38.有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请写出满足上述全部特点的一个二次函数的关系式.
C组
解答题
39.如图,已知二次函数,当x=3时,
有最大值4.
(1)求m、n的值;
(2)设这个二次函数的图象与x轴的交点是A、B,
求A、B点的坐标;
(3)当y<0时,求x的取值范围;
(4)有一圆经过A、B,且与y轴的正半轴相切于点C,
求C点坐标.
40.阅读下面的文字后,解答问题.
有这样一道题目:“已知二次函数y=ax2+bx+c的图象经过点A(0,a) 、B(1,-2)、 、 ,求证:这个二次函数图象的对称轴是直线x=2.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.
(1)根据现有信息,你能否求出题目中二次函数的解析式 若能,写出求解过程,若不能请说明理由;
(2)请你根据已有信息,在原题中的矩形框内,填上一个适当的条件,把原题补充完整.
41.已知开口向下的抛物线与x轴交于两点A(,0)、B(,0),其中<,P为顶点,∠APB=90°,若、是方程的两个根,且.
(1)求A、B两点的坐标;
(2)求抛物线的函数关系式.
42.已知二次函数的图象如图所示.
(1)当m≠-4时,说明这个二次函数的图象与x轴必有两个交点;
(2)求m的取值范围;
(3)在(2)的情况下,若,求C点坐标;
(4)求A、B两点间的距离;
(5)求⊿ABC的面积S.
实际问题
二次函数的图象
二次函数
二次函数的性质
二次函数的应用
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网