第12章回顾与总结(2)
【预案疑学】 订正笔记栏
预学导航
学习目标
巩固平方差公式、完全平方公式,并且熟练的运用他们进行化简、计算
学习重点
利用平方差公式、完全平方公式进行化简、计算
主要学法
预学作业
一、选择题
1.下列等式中成立的是( )
A.
B.
C.
D.
2.下列分解因式正确的是( )
A.
B.
C.
D.
3.因式分解的结果是( )
A. B.
C. D.
4.下列各式中,与(a-1)2相等的是( )
A. B. C.
D.
5.下列各式中,不能用平方差公式计算的是( )
A. B.
C. D.
6.设,则( )
A.30 B.15 C.60 D.12
7.多项式①;②;③ ;
④,分解因式后,结果中含有相同因式的是( )
A.①和② B.③和④ C.①和④ D.②和③
8.下列因式分解中,正确的是( )
A. B.
C. D.
9.设一个正方形的边长为,若边长增加,则新正方形的面积增加了( )
A. B.
C. D.无法确定
10.在边长为的正方形中挖去一个边长为的小正方形(如图①),把余下的部分拼成一个矩形(如图②),根据两个图形中阴影部分的面积相等,可以验证( )
A. B.
C. D.
预学质疑
【导问研学】
二、填空题
11.分解因式:__________.
12.分解因式:__________.
13.若互为相反数,则__________.
14.如果,,那么代数式的值是________.
15.若,则.
16.若,,则_________.
17.阅读下列文字与例题:
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.
例如:(1)
.
(2)
.
试用上述方法分解因式 .
18.在一个边长为的正方形内挖去一个边长为的正方形,则剩下部分的面积为 .
【导评促学】
三、解答题
19.(12分)计算下列各式:
(1);(2);(3);
.
20.(9分)将下列各式分解因式:
(1);(2)(3).
21.(4分)利用因式分解计算:
22.(4分)先化简,再求值:,其中.
23.(6分)已知
【中考链接】
24.(5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.
.
25.(6分)通过学习,同学们已经体会到灵活运用乘法公式给整式的乘法运算带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算:.
解:
①
②
.
(1)例题求解过程中,第②步变形是利用_____________(填乘法公式的名称).
(2)用简便方法计算:.
①
②
第10题图