课件36张PPT。圆 的 对 称 性24.1.2垂直于弦的直径圆的对称性圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?你是用什么方法解决上述问题的?圆是中心对称图形吗?如果是,它的对称中心是什么?你能找到多少条对称轴?你又是用什么方法解决这个问题的?圆的对称性圆是轴对称图形.圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.可利用折叠的方法即可解决上述问题.圆也是中心对称图形.它的对称中心就是圆心.用旋转的方法即可解决这个问题.③AM=BM,垂径定理AB是⊙O的一条弦.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.作直径CD,使CD⊥AB,垂足为M.右图是轴对称图形吗?如果是,其对称轴是什么?发现图中有: ① CD是直径② CD⊥AB垂径定理如图,理由是:连接OA,OB,则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM.∴AM=BM.∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,垂径定理的推论
探究①直线CD过圆心③ AM=BM
②CD⊥AB
④弧AC=弧BC ⑤弧AD=弧BD探索一:结论:推论1.(1)平分弦(不是直径)
的直径垂直于弦,
并且平分弦所对的两条弧。OC② CD⊥AB ③ AM=BM
①直线CD过圆心O
④弧AC=弧 BC
⑤弧AD= 弧BD探索二:推论1:
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OC② CD⊥AB ③ AM=BM ④弧AD=弧BD①直线CD过圆心O
⑤弧AC=弧BC探索三:推论1:
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论1:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;.
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2.圆的两条平行弦所夹的弧相等。
MOABNCD你能证明吗?驶向胜利的彼岸挑战自我填一填1、判断:
⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧. ( )
⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧. ( )
⑶经过弦的中点的直径一定垂直于弦.( )
⑷圆的两条弦所夹的弧相等,则这两条弦平行. ( )
⑸弦的垂直平分线一定平分这条弦所对的弧. ( )√???√问题1(1)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OA的夹角为 30 °,求弦 AB 的长.OAOCABM(2)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OC互相平分,交点为 M , 求 弦 AB 的长.630°EB赵州石拱桥1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).你是第一个告诉同学们解题方法和结果的吗?赵州石拱桥 解:如图,用 表示桥拱, 所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.由题设 在Rt△OAD中,由勾股定理,得解得 R≈27.9(m).答:赵州石拱桥的桥拱半径约为27.9m.例1:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.解:连结OA。过O作OE⊥AB,垂足为E,则OE=3厘米,AE=BE。∵AB=8厘米 ∴AE=4厘米
在RtAOE中,根据勾股定理有OA=5厘米 ∴⊙O的半径为5厘米。讲解例2:已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。
求证:AC=BD。证明:过O作OE⊥AB,垂足为E,∴AE=BE,CE=DE。
∴AE-CE=BE-DE。
∴AC=BDE讲解学生练习已知:如图,AB是⊙O直径,与CD相交于点E,已知AE=1cm,BE=5cm, ∠DEB=600,求弦CD的长..OCDABECDABE例3:平分已知弧AB已知:弧AB作法:⒈ 连结AB.⒉作AB的垂直平分线 CD,交弧AB于点E.∴点E就是所求弧AB的中点。求作:弧AB的中点CDABEFG变式一: 求弧AB的四等分点。 mnCDABMTEFGHNP错在哪里?等分弧时一定要作弧所夹弦的垂直平分线。作AB的垂直平分线CD。作AT.BT的垂直
平分线EF.GH变式二:你能确定 弧AB的圆心吗?CABMO.你能破镜重圆吗?ABACmn·O 作弦AB.AC及它们的垂直平分线m.n,交于O点;以O为圆心,OA为半径作圆。破镜重圆ABCmn·O 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
作图依据:垂径定理的应用在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB = 600mm,求油的最大深度. 垂径定理的逆应用在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB = 600mm,求油的最大深度. DC垂径定理的应用1, 如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求这段弯路的半径.解:连接OC.8如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.证明:∴四边形ADOE为矩形,又 ∵AC=AB∴ AE=AD∴ 四边形ADOE为正方形.船能过拱桥吗3. 如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?船能过拱桥吗解:如图,用 表示桥拱, 所在圆的心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.由题设得在Rt△OAD中,由勾股定理,得解得 R≈3.9(m).在Rt△ONH中,由勾股定理,得∴此货船能顺利通过这座拱桥.例1:如图,圆O的弦AB=8 ㎝ ,
DO=2㎝,直径CE⊥AB
于D,求半径OC的长。垂径例3:如图,已知圆O的直径AB与
弦CD相交于G,AE⊥CD于E,
BF⊥CD于F,且圆O的半径为
10㎝,CD=16 ㎝,求AE-BF的长。
练习3:如图,CD为圆O的直径,弦
AB交CD于E, ∠ CEB=30°,
DE=9㎝,CE=3㎝,求弦AB的长。