第二章 二次函数专题训练(含解析)

文档属性

名称 第二章 二次函数专题训练(含解析)
格式 docx
文件大小 2.4MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2023-12-18 06:56:46

图片预览

文档简介

中小学教育资源及组卷应用平台
九年级下册数学二次函数
一、单选题
1.已知函数是二次函数,则m的值为()
A.±2 B.2 C.-2 D.m为全体实数
2.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B.
C. D.
3.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是(  )
A. B. C. D.
4.函数与在同一直角坐标系中的大致图象可能是( )
A. B. C. D.
5.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是(  )
A. B.
C. D.
6.关于二次函数,下列说法正确的是( )
A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧
C.当时,的值随值的增大而减小 D.的最小值为-3
7.抛物线y=3(x﹣2)2+5的顶点坐标是(  )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
8.如图是二次函数的部分图象,由图象可知不等式的解集是【 】
A. B. C.且 D.x<-1或x>5
9.将抛物线向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为( )
A. B. C. D.
10.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为( )
A.y=(x+1)2+4 B.y=(x﹣1)2+4
C.y=(x+1)2+2 D.y=(x﹣1)2+2
11.二次函数的最大值为( )
A.3 B.4
C.5 D.6
12.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是( )
A. B. C. D.
13.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为(  )
A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
14.一个二次函数的图像的顶点坐标为,与轴的交点,这个二次函数的解析式是( )
A. B.
C. D.
15.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是(  )
A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1
16.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( )
A.1 B.2 C.3 D.4
17.抛物线的部分图像如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:
;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.
其中正确的有  
A.5个 B.4个 C.3个 D.2个
18.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是(  )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
19.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
20.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是(  )
A. B.
C. D.
21.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为( )
A. B. C. D.
22.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
二、填空题
23.若是二次函数,则的值是 ________.
24.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.
25.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.
26.已知:二次函数y=ax2+bx+c图像上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图像与x轴的另一个交点坐标是_____.
x … ﹣1 0 1 2 …
y … 0 3 4 3 …
27.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_______.
三、解答题
28.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
29.某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.
(1)求y与x之间的函数关系式;
(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?
30.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量(单位:件)与线下售价(单位:元/件,)满足一次函数的关系,部分数据如下表:
(1)求与的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
31.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.
(1)当每件的销售价为52元时,该纪念品每天的销售数量为   件;
(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
32.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
33.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
34.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
35.如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
36.如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.
(1)求二次函数解析式;
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
37.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
38.已知,抛物线y=-x +bx+c经过点A(-1,0)和C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小 如果存在,请求出点P的坐标,如果不存在,请说明理由;
(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.
39.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
40.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
41.如图,二次函数经过点和点,与轴交于点.
求抛物线的解析式;
为轴右侧抛物线上一点,是否存在点,使若存在,请直接写出点的坐标;若不存在,请说明理由.
42.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
43.如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;
(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.
44.已知二次函数的图象与轴交于两点,与轴交于点,
(1)求二次函数的表达式;
(2)是二次函数图象上位于第三象限内的点,求点到直线的距离取得最大值时点的坐标;
(3)是二次函数图象对称轴上的点,在二次函数图象上是否存在点.使以为顶点的四边形是平行四边形?若有,请写出点的坐标(不写求解过程).
45.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值;
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
46.在平面直角坐标系中,二次函数的图象交坐标轴于 A(﹣1,0),B(4,0),C
(0,﹣4)三点,点 P 是直线 BC 下方抛物线上一动点.
(1) 求这个二次函数的解析式;
(2) 是否存在点 P,使△POC 是以 OC 为底边的等腰三角形?若存在,求出 P 点坐标;若不存在,请说明理由;
(3) 在抛物线上是否存在点 D(与点 A 不重合)使得 S△DBC=S△ABC,若存在,求出点 D的坐标;若不存在,请说明理由.
47.在平面直角坐标系中,二次函数 y=ax2+bx+2 的图象与 x 轴交于 A(﹣3,0),B(1,0)两点,与 y 轴交于点C.
(1)求这个二次函数的关系解析式 ,x 满足什么值时 y﹤0
(2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P,使△ACP 面积最大?若存在,求出点 P的坐标;若不存在,说明理由
(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q,使以 A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.
48.如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.
(1)求出二次函数和所在直线的表达式;
(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;
(3)连接,,在动直线移动的过程中,抛物线上是否存在点,使得以点,,为顶点的三角形与相似,如果存在,求出点的坐标,如果不存在,请说明理由.
参考答案:
1.C
【分析】根据二次函数定义列式求解即可.
【详解】解:∵函数是二次函数
∴m-2≠0,,解得:m=-2.
故选:C.
【点睛】本题主要考查了二次函数定义,掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.
2.B
【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.
【详解】A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;
B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;
C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;
D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.
故选:B.
【点睛】本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
3.D
【详解】【分析】依据抛物线y=x2+2x+k+1与x轴有两个不同的交点,即可得到k<0,进而得出一次函数y=kx﹣k的图象经过第一二四象限,反比例函数y=的图象在第二四象限,据此即可作出判断.
【详解】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点,
∴△=4﹣4(k+1)>0,
解得k<0,
∴一次函数y=kx﹣k的图象经过第一二四象限,
反比例函数y=的图象在第二四象限,
故选D.
【点睛】本题考查了二次函数的图象与x轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x轴的交点情况确定出k的取值范围是解本题的关键.
4.B
【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.
【详解】解:由解析式y=-kx2+k可得:抛物线对称轴x=0;
A、由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上,而不是交于y轴正半轴,故选项A错误;
B、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故选项B正确;
C、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,而不是y轴的负半轴,本图象不符合题意,故选项C错误;
D、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,而不是开口向上,本图象不符合同意,故选项D错误.
故选B.
【点睛】本题考查二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.
5.D
【分析】分a>0和a<0两种情况根据二次函数图象的开口方向、对称轴、与y轴的交点情况分析判断即可得解.
【详解】解:a>0,b>0时,抛物线开口向上,对称轴,在y轴左边,与y轴正半轴相交,
a<0,b<0时,抛物线开口向下,对称轴,在y轴左边,与y轴正半轴坐标轴相交,
D选项符合.
故选D.
【点睛】本题考查了二次函数图象,熟练掌握函数图象与系数的关系是解题的关键,注意分情况讨论.
6.D
【详解】∵y=2x2+4x-1=2(x+1)2-3,
∴当x=0时,y=-1,故选项A错误,
该函数的对称轴是直线x=-1,故选项B错误,
当x<-1时,y随x的增大而减小,故选项C错误,
当x=-1时,y取得最小值,此时y=-3,故选项D正确,
故选:D.
【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
7.C
【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5).
故选C.
【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
8.D
【详解】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(5,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>5.故选D.
9.D
【分析】用顶点式表达式,按照抛物线平移的公式即可求解.
【详解】解:将抛物线先向上平移3个单位长度,再向右平移5个单位长度后,函数的表达式为:.
故选:D.
【点睛】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.
10.D
【详解】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可得:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.
故选:D.
11.C
【分析】先利用配方法得到y=﹣(x﹣1)2+5,然后根据二次函数的最值问题求解.
【详解】解:y=﹣(x﹣1)2+5,
∵a=﹣1<0,
∴当x=1时,y有最大值,最大值为5.
故选C.
【点睛】本题考查二次函数的最值,掌握配方法正确计算,利用数形结合思想解题是关键.
12.D
【详解】∵,
∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,
∵3<5,
∴,
根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,
故,
故选:D.
13.C
【分析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
∵其中一个交点的坐标为,则另一个交点的坐标为,
故选C.
【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
14.B
【分析】由于已知顶点坐标,则可设顶点式,然后把(0,﹣4)代入求出a的值即可得到抛物线解析式.
【详解】解:设抛物线解析式为,把(0,﹣4)代入得:

解得:a=﹣,
所以抛物线解析式为y=﹣(x﹣3)2﹣1=﹣x2+2x﹣4.
故选:B.
【点睛】本题考查了待定系数法求二次函数的解析式,解题的关键是设出二次函数的顶点式.
15.C
【详解】解:∵二次函数y=(x﹣1)2﹣4,
∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,
解得:x=3或﹣1,
∴当y<0时,x的取值范围是﹣1<x<3.
故选C.
【点睛】本题主要考查二次函数的性质,解此题的关键是求出函数图象与x轴的交点,再根据二次函数的性质就能得出答案.
16.C
【详解】①∵抛物线开口向下,∴a<0,
∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,
∵抛物线与y轴的交点在x轴上方,∴c>0,
∴abc>0,所以①正确,符合题意;
②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac ③∵b=2a,∴2a﹣b=0,所以③错误,不符合题意;
④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确,符合题意.
故选C.
17.B
【分析】结合函数图像,根据二次函数的性质及二次函数与一元二次方程、一元二次不等式间的关系逐一判断即可.
【详解】对称轴是y轴的右侧,

抛物线与y轴交于正半轴,

,故错误,不符合题意;

,,故正确,符合题意;
由图像得:时,与抛物线有两个交点,
方程有两个不相等的实数根,故正确,符合题意;
抛物线与x轴的一个交点坐标为,抛物线的对称轴是,
抛物线与x轴的另一个交点坐标为,故正确,符合题意;
抛物线的对称轴是,
有最大值是,
点在该抛物线上,
,故正确,符合题意,
本题正确的结论有:,4个,
故选:B.
【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数的图像及其性质是解答本题的关键.
18.D
【详解】解:①∵函数开口方向向上,
∴a>0;
∵对称轴在y轴右侧,
∴a、b异号,
∵抛物线与y轴交点在y轴负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,
∴图象与x轴的另一个交点为(3,0),
∴当x=2时,y<0,
∴4a+2b+c<0,
故②错误;
③∵图象与x轴交于点A(﹣1,0),
∴当x=﹣1时,y==0,
∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵对称轴为直线x=1,
∴=1,即b=﹣2a,
∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣=4 a (﹣3a)﹣=<0,
∵8a>0,
∴4ac﹣<8a,
故③正确;
④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,
∴﹣2<c<﹣1,
∴﹣2<﹣3a<﹣1,
∴>a>,
故④正确;
⑤∵a>0,
∴b﹣c>0,即b>c,
故⑤正确.
故选:D.
【点睛】本题考查二次函数的图像与系数的关系,熟练掌握图像与系数的关系,数形结合来进行判断是解题的关键.
19.C
【详解】解:①∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
所以①错误;
②∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在y轴的左侧,
∴a、b同号,
∴b>0,
∵抛物线与y轴交点在x轴上方,
∴c>0,
∴abc>0,
所以②正确;
③∵x=﹣1时,y<0,
即a﹣b+c<0,
∵对称轴为直线x=﹣1,
∴,
∴b=2a,
∴a﹣2a+c<0,即a>c,
所以③正确;
④∵抛物线的对称轴为直线x=﹣1,
∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,
∴4a﹣2b+c>0,
所以④正确.
所以本题正确的有:②③④,三个,
故选C.
20.B
【详解】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y==;
②当1<x≤2时,重叠三角形的边长为2﹣x,高为,
y==;
③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,
故选B.
【点睛】考点:动点问题的函数图象;动点型;分类讨论.
21.B
【分析】由点,分别从,两点同时出发,以的速度沿,运动,得到,则,再根据正方形的性质得,,然后根据“”可判断,所以,这样,于是,然后配方得到,最后利用解析式和二次函数的性质对各选项进行判断.
【详解】解:根据题意,,
四边形为正方形,
,,
在和中





与的函数图象为抛物线一部分,顶点为,自变量为.
故选:B.
【点睛】本题考查了动点问题的函数图象,解题的关键是掌握先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
22.C
【详解】解:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,
则△BPQ的面积=BP BQ,
可得y= 3x x=;
故A选项错误;
②1<x≤2时,P点在CD边上,
则△BPQ的面积=BQ BC,
可得y= x 3=;
故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,
则△BPQ的面积=AP BQ,
可得y= (9﹣3x) x=;
故D选项错误.
故选:C.
23.
【分析】根据二次函数的定义求解即可.
【详解】由题意,得
m2﹣2=2,且m+2≠0,
解得m=2,
故答案为:2.
【点睛】本题考查了二次函数的定义,利用二次函数的定义是解题关键.
24.
【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案.
【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为
通过以上条件可设顶点式,其中可通过将A点坐标
代入到抛物线解析式得出:所以抛物线解析式为
当水面下降2米,通过抛物线在图上的观察可转化为:
当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,
可以通过把代入抛物线解析式得出:
解得:
所以水面宽度增加到米,比原先的宽度当然是增加了
故答案是:
【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.
25.-1或2或1
【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.
【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,
当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,
解得:a1=-1,a2=2,
当函数为一次函数时,a-1=0,解得:a=1.
故答案为:-1或2或1
26.(3,0).
【分析】根据(0,3)、(2,3)两点求得对称轴,得出对称轴方程为x=1,再利用二次函数图像的对称性解答即可.
【详解】∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图像与x轴的另一个交点坐标是(3,0).
故答案为:(3,0).
【点睛】本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数图像的对称性.
27.4
【分析】根据已知得出阴影部分即为平行四边形的面积.
【详解】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=4.
故答案是:4.
【点睛】本题考查了二次函数图像与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积.
28.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
【分析】(1)用待定系数法列方程组求一次函数解析式.
(2)根据(1)中解析式,列一元二次方程求解.
(3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.
【详解】(1)设y与x的函数关系式为y=kx+b.
把(22,36)与(24,32)代入,得
解得,
∴y=-2x+80(20≤x≤28).
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,
根据题意,得:(x-20)y=150,即(x-20)(-2x+80)=150.
解得x1=25,x2=35(舍去).
答:每本纪念册的销售单价是25元.
(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.
∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,
∴当x=28时,w最大=-2×(28-30)2+200=192(元).
答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.
【点睛】本题考查了一次函数解析式的求法,列一元二次方程并求解,再根据二次函数的求最值问题,这是一道综合题,解题的关键是能读懂题意,找到关键点.
29.(1)y=﹣2x+160(40≤x≤80);(2)当销售单价x为60元时,日销售利润w最大,最大日销售利润是800元.
【分析】(1)利用待定系数法求解即可;(2)根据(1)的函数关系式,利用求二次函数最值的方法求解即可.
【详解】(1)设y与x的函数关系式为:y=kx+b(k≠0),
由题意得: ,
解得:k=﹣2,b=160,
所以y与x之间的函数关系式是y=﹣2x+160(40≤x≤80);
(2)由题意得,w与x的函数关系式为:
w=(x﹣40)(﹣2x+160)=﹣2x2+240x﹣6400=﹣2(x﹣60)2+800,
当x=60元时,w最大利润是800元,
所以当销售单价x为60元时,日销售利润w最大,最大日销售利润是800元.
【点睛】本题考查了一次函数与二次函数的应用,解题的关键是利用待定系数法求出一次函数与二次函数的解析式.
30.(1);(2)当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元.
【分析】(1)由待定系数法求出y与x的函数关系式即可;
(2)设线上和线下月利润总和为w元,则w=400(x-2-10)+y(x-10)=400x-4800+(-100x+2400)(x-10)=-100(x-19)2+7300,由二次函数的性质即可得出答案.
【详解】解:(1)因为y与x满足一次函数的关系,所以设y=kx+b.
将点(12,1200),(13,1100)代入函数解析式得
解得
∴与的函数关系式为.
(2)设商家线上和线下的月利润总和为元,则可得
=400(x-12)+(-100x+2400)(x-10)
=-100x2+3800x-28800
=,
因为-100<0,
所以当x=19时,w有最大值,为7300,
所以当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元.
【点睛】本题考查了二次函数的应用、待定系数法求一次函数的解析式等知识;弄清题意,找准各量间的关系,熟练掌握二次函数的性质是解题的关键.
31.(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
【详解】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
故答案为180;
(2)由题意得:
y=(x﹣40)[200﹣10(x﹣50)]
=﹣10x2+1100x﹣28000
=﹣10(x﹣55)2+2250
∴每件销售价为55元时,获得最大利润;最大利润为2250元.
【点睛】此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
32.(1)y=﹣x2+2x+3;(2)P ( ,);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
【分析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(3,3),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(3)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.
【详解】(1)把x=0代入y=﹣x+3,得:y=3,
∴C(0,3).
把y=0代入y=﹣x+3得:x=3,
∴B(3,0),A(﹣1,0).
将C(0,3)、B(3,0)代入y=﹣x2+bx+c得: ,解得b=2,c=3.
∴抛物线的解析式为y=﹣x2+2x+3.
(2)如图所示:作点O关于BC的对称点O′,则O′(3,3).
∵O′与O关于BC对称,
∴PO=PO′.
∴OP+AP=O′P+AP≤AO′.
∴OP+AP的最小值=O′A==5.
O′A的方程为y=
P点满足解得:
所以P ( ,)
(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4).
又∵C(0,3,B(3,0),
∴CD=,BC=3,DB=2.
∴CD2+CB2=BD2,
∴∠DCB=90°.
∵A(﹣1,0),C(0,3),
∴OA=1,CO=3.
∴.
又∵∠AOC=DCB=90°,
∴△AOC∽△DCB.
∴当Q的坐标为(0,0)时,△AQC∽△DCB.
如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.
∵△ACQ为直角三角形,CO⊥AQ,
∴△ACQ∽△AOC.
又∵△AOC∽△DCB,
∴△ACQ∽△DCB.
∴,即,解得:AQ=10.
∴Q(9,0).
综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.
33.(1)抛物线的解析式为y=﹣x2+2x+3.(2)证明见解析;(3)点P坐标为(,)或(2,3).
【详解】试题分析:(1)将A(﹣1,0)、C(0,3),代入二次函数y=ax2+bx﹣3a,求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.
试题解析:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴将A(﹣1,0)、C(0,3),代入,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,连接DC、BC、DB,由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)y=﹣x2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,(不满足在对称轴右侧应舍去),∴x=,∴y=4﹣x=,即点P1坐标为(,).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).
考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.
34.(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.
【详解】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;
(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;
(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.
详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),
∴,
解得:,
所以二次函数的解析式为:y=;
(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,
过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,

设D(m,),则点F(m,),
∴DF=﹣()=,
∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH
=×DF×AG+×DF×EH
=×4×DF
=2×()
=,
∴当m=时,△ADE的面积取得最大值为.
(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三种情况讨论:
当PA=PE时,=,解得:n=1,此时P(﹣1,1);
当PA=AE时,=,解得:n=,此时点P坐标为(﹣1,);
当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).
综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).
点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.
35.(1)m=2,顶点为(1,4);(2)(1,2).
【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.
【详解】解:(1)把点B的坐标为(3,0)代入抛物线y=+mx+3得:0=+3m+3,
解得:m=2,
∴y=+2x+3=,
∴顶点坐标为:(1,4).
(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴,解得:,
∴直线BC的解析式为:y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).
【点睛】
36.(1);(2)存在这样的点,此时P点的坐标为(,);(3)P点的坐标为(, ),四边形ABPC的面积的最大值为.
【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;
(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;
(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.
【详解】(1)将B、C两点的坐标代入,得
, 解得.
∴二次函数的解析式为.
(2)存在点P,使四边形POP′C为菱形;.
设P点坐标为(x,x2-2x-3),PP′交CO于E.
若四边形POP′C是菱形,则有PC=PO;.
连接PP′,则PE⊥CO于E,

∵C(0,-3),
∴CO=3,
又∵OE=EC,
∴OE=EC=.
∴y= ;
∴x2-2x-3= ,
解得(不合题意,舍去).
∴存在这样的点,此时P点的坐标为(,).
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2-2x-3),
设直线BC的解析式为:y=kx+d,
则,
解得: .
∴直线BC的解析式为y=x-3,
则Q点的坐标为(x,x-3);
当0=x2-2x-3,
解得:x1=-1,x2=3,
∴AO=1,AB=4,
S四边形ABPC=S△ABC+S△BPQ+S△CPQ.
=AB OC+QP BF+QP OF.
=×4×3+ ( x2+3x)×3.
= (x )2+.
当x=时,四边形ABPC的面积最大.
此时P点的坐标为(, ),四边形ABPC的面积的最大值为.
37.(1)足球飞行的时间是s时,足球离地面最高,最大高度是4.5m;(2)能.
【分析】(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.
【详解】解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),
∴,
解得:,
∴抛物线的解析式为:y=﹣t2+5t+,
∴当t=时,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,
∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,
∴他能将球直接射入球门.
38.(1);(2)存在,当的值最小时,点的坐标为;(3)点的坐标为、、或
【分析】(1)由点、的坐标,利用待定系数法即可求出抛物线的解析式;
(2)连接交抛物线对称轴于点,此时取最小值,利用二次函数图象上点的坐标特征可求出点的坐标,由点、的坐标利用待定系数法即可求出直线的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点的坐标;
(3)设点的坐标为,则,,,分、和三种情况,利用勾股定理可得出关于的一元二次方程或一元一次方程,解之可得出的值,进而即可得出点的坐标.
【详解】解:(1)将、代入中,
得:,解得:,
抛物线的解析式为.
(2)连接交抛物线对称轴于点,此时取最小值,如图1所示.
当时,有,
解得:,,
点的坐标为.
抛物线的解析式为,
抛物线的对称轴为直线.
设直线的解析式为,
将、代入中,
得:,解得:,
直线的解析式为.
当时,,
当的值最小时,点的坐标为.
(3)设点的坐标为,
则,,.
分三种情况考虑:
①当时,有,即,
解得:,,
点的坐标为或;
②当时,有,即,
解得:,
点的坐标为;
③当时,有,即,
解得:,
点的坐标为.
综上所述:当是直角三角形时,点的坐标为、、或.
【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线解析式;(2)由两点之间线段最短结合抛物线的对称性找出点的位置;(3)分、和三种情况,列出关于的方程.
39.(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.
【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
【详解】(1)设抛物线解析式为,
当时,,
点的坐标为,
将点坐标代入解析式得,
解得:,
抛物线的函数表达式为;
(2)由抛物线的对称性得,

当时,,
矩形的周长




当时,矩形的周长有最大值,最大值为;
(3)如图,
当时,点、、、的坐标分别为、、、,
矩形对角线的交点的坐标为,
直线平分矩形的面积,
点是和的中点,

由平移知,
是的中位线,

所以抛物线向右平移的距离是4个单位.
【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
40.(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;
(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;
(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.
【详解】(1)设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得,解得,
∴抛物线解析式为y=x2﹣3x﹣4;
(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,
∴PO=PD,此时P点即为满足条件的点,
∵C(0,﹣4),∴D(0,﹣2),
∴P点纵坐标为﹣2,
代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
∴存在满足条件的P点,其坐标为(,﹣2);
(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),
过P作PE⊥x轴于点E,交直线BC于点F,如图2,
∵B(4,0),C(0,﹣4),
∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),
∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
∴S△PBC=S△PFC+S△PFB=PF OE+PF BE=PF (OE+BE)=PF OB
=(﹣t2+4t)×4=﹣2(t﹣2)2+8,
∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,
∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
41.(1) ;(2) 存在,D(1,3)或(2,3)或(5,-3)
【分析】(1)利用待定系数法将点A和点B的坐标代入,求出a和b的值即可;
(2)求出△ABC的面积,根据求出△ABD的面积,得出△ABD中AB边上的高,从而分点D在x轴上方和x轴下方分别求出点D的坐标.
【详解】解:(1)把点和点代入中,
得,
解得:,
抛物线的解析式为;
(2)存在,,
理由是:∵A(-1,0),B(4,0),C(0,2),
∴,
∵,
∴,
在△ABD中,∵AB=5,
∴AB边上的高,即点D到x轴的距离为3,
∵抛物线表达式为,
若点D的纵坐标为3,令y=3,
解得x=1或2,
∴点D的坐标为(1,3)或(2,3);
若点D的纵坐标为-3,令y=-3,
解得x=5或-2(舍),
∴点D的坐标为(5,-3).
综上:存在,使得.
【点睛】本题考查了待定系数法求二次函数的解析式,二次函数上点的坐标,解题的关键是注意分类讨论思想的运用.
42.(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)
【分析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;
(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.
【详解】解:(1)、∵抛物线的顶点为A(1,4),
∴设抛物线的解析式y=a(x﹣1)2+4,
把点B(0,3)代入得,a+4=3,
解得a=﹣1,
∴抛物线的解析式为y=﹣(x﹣1)2+4;
(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;
令y=0,则0=﹣(x﹣1)2+4,
∴x=﹣1或x=3,
∴C(﹣1,0),D(3,0);
∴CD=4,
∴S△BCD=CD×|yB|=×4×3=6;
(3)由(2)知,S△BCD=6,CD=4,
∵S△PCD=S△BCD,
∴S△PCD=CD×|yP|=×4×|yP|=3,
∴|yP|=,
∵点P在x轴上方的抛物线上,
∴yP>0,
∴yP=,
∵抛物线的解析式为y=﹣(x﹣1)2+4;
∴=﹣(x﹣1)2+4,
∴x=1±,
∴P(1+ ,),或P(1﹣,).
【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.
43.(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).
【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;
(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;
(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.
【详解】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,
得:,
解得:,
故抛物线的解析式:.
(2)当P点在x轴上,P,A,B三点在一条直线上时,
点P到点A、点B的距离之和最短,
此时x==1,
故P(1,0);
(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:
=,==,=10;
①若MA=MC,则,得:=,
解得:m=﹣1;
②若MA=AC,则,得:=10,
得:m=;
③若MC=AC,则,得:=10,
得:,;
当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;
综上可知,符合条件的M点,且坐标为 M(1,)(1,)(1,﹣1)(1,0).
考点:二次函数综合题;分类讨论;综合题;动点型.
44.(1);(2)(,);(3)(-2,-3)或(0,-3)或(2,5).
【分析】(1)把A,C点带入方程,列方程组即可求解;
(2)根据题意得出当点到直线的距离取得最大值时,求出AC表达式,将直线AC向下平移m(m>0)个单位,得到直线l,当直线l与二次函数图像只有一个交点时,该交点为点D,此时点D到直线AC的距离最大,联立直线l和二次函数表达式,得到方程,当方程有两个相同的实数根时,求出m的值,从而得到点D的坐标;
(3)分当OB是平行四边形的边和OB是平行四边形的对角线时,利用平行四边形的性质求出点N的坐标即可.
【详解】解:(1)将B(1,0),带入函数关系式得,

解得:,
∴二次函数表达式为:;
(2)当点到直线的距离取得最大值时,
∵A(-3,0),,
设直线AC的表达式为:y=kx+n,,将A和C代入,
,解得:,
∴直线AC的表达式为y=-x-3,将直线AC向下平移m(m>0)个单位,得到直线l,
当直线l与二次函数图像只有一个交点时,该交点为点D,此时点D到直线AC的距离最大,
此时直线l的表达式为y=-x-3-m,
联立:,得:,
令△=,解得:m=,
则解方程:,得x=,
∴点D的坐标为(,);
(3)∵M在抛物线对称轴上,设M坐标为(-1,t),
当OB为平行四边形的边时,
如图1,可知MN和OB平行且相等,
∴点N(-2,t)或(0,t),代入抛物线表达式得:
解得:t=-3,
∴N(-2,-3)或(0,-3);
当OB为平行四边形对角线时,
线段OB的中点为(,0),对角线MN的中点也为(,0),
∵M坐标为(-1,t),
可得点N(2,-t),代入抛物线表达式得:
4+4-3=-t,
解得:t=-5,
∴点N的坐标为(2,5),
综上:以为顶点的四边形是平行四边形时,点N的坐标为(-2,-3)或(0,-3)或(2,5).
【点睛】本题是二次函数综合题,考查了求二次函数表达式,二次函数与一元二次方程的关系,平行四边形的性质,最值问题,解题的关键是要结合函数图像,得到结论.
45.(1);(2)点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3;(3)P的坐标是(﹣3,)、(5,)、(﹣1,).
【详解】解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,
∴点B的坐标是(0,3),点C的坐标是(4,0),
∵抛物线y=ax2+x+c经过B、C两点,
∴,解得,
∴y=﹣x2+x+3.
(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,
∵点E是直线BC上方抛物线上的一动点,
∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),
∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,
∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x=﹣(x﹣2)2+3,
∴当x=2时,即点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3.
(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.
①如图2,
由(2),可得点M的横坐标是2,
∵点M在直线y=﹣x+3上,
∴点M的坐标是(2,),
又∵点A的坐标是(﹣2,0),
∴AM=,
∴AM所在的直线的斜率是:;
∵y=﹣x2+x+3的对称轴是x=1,
∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),

解得或,
∵x<0,
∴点P的坐标是(﹣3,﹣).
②如图3,
由(2),可得点M的横坐标是2,
∵点M在直线y=﹣x+3上,
∴点M的坐标是(2,),
又∵点A的坐标是(﹣2,0),∴AM=,
∴AM所在的直线的斜率是:;
∵y=﹣x2+x+3的对称轴是x=1,
∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则,
解得或,
∵x>0,
∴点P的坐标是(5,﹣).
③如图4,
由(2),可得点M的横坐标是2,
∵点M在直线y=﹣x+3上,
∴点M的坐标是(2,),
又∵点A的坐标是(﹣2,0),
∴AM=,
∵y=﹣x2+x+3的对称轴是x=1,
∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),

解得,
∴点P的坐标是(﹣1,).
综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣3,﹣)、(5,﹣)、(﹣1,).
【点睛】本题考查二次函数综合题.
46.(1)抛物线解析式为y=x2﹣3x﹣4;(2)存在满足条件的P点,其坐标为(,﹣2);(3)存在满足条件的D点,其坐标为(5,6).
【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;
(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;
(3)存在.分两种情况讨论,再利用待定系数法以及解方程组即可解决问题.
【详解】(1)设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得,解得,
∴抛物线解析式为y=x2﹣3x﹣4;
(2)如图1,作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,
∴PO=PC,此时P点即为满足条件的点,
∵C(0,﹣4),
∴D(0,﹣2),
∴P点纵坐标为﹣2,
代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
∴存在满足条件的P点,其坐标为(,﹣2);
(3)如图2,
①当D点在直线BC的上方时,过A点作AD1∥BC,交抛物线于D1,此时,使得S△DBC=S△ABC,
∵B(4,0),C(0,﹣4),
∴直线BC的解析式为y=x﹣4,
∵AD1∥BC,
∴设直线AD11的解析式为y=x+n,
把A(﹣1,0)代入得,0=﹣1+n,则n=1,
∴直线AD1的解析式为y=x+1,
解得或,
∴D1的坐标为(5,6),
②当D点在直线BC的下方时,
由直线AD1的解析式为y=x+1可知直线AD1和y轴的交点E的坐标为(0, 1),
∴CE=5,
∴直线AD的解析式为y=x﹣10,
∵方程x2﹣3x﹣4=x﹣10无实数根,
故存在满足条件的D点,其坐标为(5,6).
【点睛】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中AD∥BC是解题的关键.本题考查知识点较多,综合性较强,难度适中.
47.(1), 或;(2)P;(3)
【分析】(1)将点A(﹣3,0),B(1,0)带入y=ax2+bx+2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y﹤0;
(2)设出P点坐标,利用割补法将△ACP 面积转化为,带入各个三角形面积算法可得出与m之间的函数关系,分析即可得出面积的最大值;
(3)分两种情况讨论,一种是CM平行于x轴,另一种是CM不平行于x轴,画出点Q大概位置,利用平行四边形性质即可得出关于点Q坐标的方程,解出即可得到Q点坐标.
【详解】解:(1)将A(﹣3,0),B(1,0)两点带入y=ax2+bx+2可得:
解得:
∴二次函数解析式为.
由图像可知,当或时y﹤0;
综上:二次函数解析式为,当或时y﹤0;
(2)设点P坐标为,如图连接PO,作PM⊥x轴于M,PN⊥y轴于N.
PM=,PN=,AO=3.
当时,,所以OC=2


∴函数有最大值,
当时,有最大值,
此时;
所以存在点,使△ACP 面积最大.
(3)存在,
假设存在点Q使以 A、C、M、Q 为顶点的四边形是平行四边形
①若CM平行于x轴,如下图,有符合要求的两个点此时=
∵CM∥x轴,
∴点M、点C(0,2)关于对称轴对称,
∴M(﹣2,2),
∴CM=2.
由=;
②若CM不平行于x轴,如下图,过点M作MG⊥x轴于点G,
易证△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.
设M(x,﹣2),则有,解得:.
又QG=3,∴,

综上所述,存在点P使以 A、C、M、Q 为顶点的四边形是平行四边形,
Q点坐标为:
.
【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.
48.(1),;(2);(3)存在,点的坐标是.
【分析】(1)将,代入,解出a,b得值即可;求出C点坐标,将C,B代入线段所在直线的表达式,求解即可;
(2)根据题意只要,四边形即为平行四边形,先求出点D坐标,然后求出DE,设点的横坐标为,则,,得出,根据,得,求解即可;
(3)由(2)知,,根据与有共同的顶点,且在的内部,只有当时,,利用勾股定理,可得
,,根据,即,解出t值,即可得出答案.
【详解】解:(1)由题意,将,代入,
得,
解得,
∴二次函数的表达式,
当时,,得点,又点,
设线段所在直线的表达式,
∴,解得,
∴所在直线的表达式;
(2)∵轴,轴,
∴,
只要,此时四边形即为平行四边形,
由二次函数,
得点,
将代入,即,得点,
∴,
设点的横坐标为,则,,
由,得,
解之,得(不合题意舍去),,
当时,,
∴;
(3)由(2)知,,
∴,
又与有共同的顶点,且在的内部,
∴,
∴只有当时,,
由,,,
利用勾股定理,可得,,
由(2)以及勾股定理知,,

∴,即,
∵,
∴,
∴,
当时,,
∴点的坐标是.
【点睛】本题属于二次函数综合题,考查了二次函数的性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理,灵活运用知识点是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)