24.2.1点与圆的位置关系

文档属性

名称 24.2.1点与圆的位置关系
格式 rar
文件大小 315.6KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2008-10-17 19:28:00

图片预览

文档简介

课件30张PPT。24.2 与圆有关的位置关系24.2.1 点和圆的位置关系 我国射击运动员在奥运会上屡获金牌,为我国赢得荣誉,右图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?观 察 r问题2:设⊙O半径为 r , 说出来点A,点B,点C与圆心O 的距离与半径的关系:·COABOC > r.问题1:观察图中点A,点B,点C与圆的位置关系?点C在圆外.点A在圆内,点B在圆上,OA < r,OB = r, 问 题 探 究设⊙O的半径为r,点P到圆心的距离OP = d,则有:点P在圆上 d = r;点P在圆外 d > r . 点P在圆内 d < r ; r·OA问题3:反过来,已知点到圆心的距离和圆的半径,能否 判断点和圆的位置关系?PPP射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.你知道击中靶上不同位置的成绩是如何计算的吗 ?设⊙O的半径为r,点到圆心的距离为d。则点和圆的位置关系点在圆内d﹤r点在圆上点在圆外d=rd>r练习:已知圆的半径等于5厘米,点到圆心的距离是:
A、8厘米 B、4厘米 C、5厘米。
请你分别说出点与圆的位置关系。●●●●O例:如图已知矩形ABCD的边AB=3厘米,AD=4厘米(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆上,D在圆外,C在圆外)(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆上,C在圆外)(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆内,C在圆上)·2cm3cm1,画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.O思考体育课上,小明和小雨的铅球成绩分别是 6.4m和5.1m,他们投出的铅球分别落在图中哪个区域内?思考●A●A●B过一点可作几条直线?过两点可以作几条直线?过三点呢?过两点有且只有一条直线(直线公理)
(“有且只有”就是“确定”的意思)
经过一点可以作无数条直线;
回忆思考:过三点直线公理:两点确定一条直线 对于一个圆来说,过几个点能作一个圆,并且只能作一个圆?类比探究:过一点能作几个圆?无数个过A点的圆的圆心有何特点?平面上除A点外的任意一点过两点能作几个圆?过A、B两点的圆的圆心有何特点?经过两点A,B的圆的圆心在线段AB的垂直平分线上.
以线段AB的垂直平分线上的任意一点为圆心,这点到A或B的距离为半径作圆.
1、连结AB,作线段AB的垂直平分线DE,2、连结BC,作线段BC的垂直平分线FG,交DE于点O,3、以O为圆心,OB为半径作圆,作法:⊙O就是所求作的圆已知:不在同一直线上的三点 A、B、C
求作:⊙O,使它经过A、B、C1、三点不共线 请你证明你作的圆符合要求证明:∵点O在AB的垂直平分线上,
∴OA=OB.
同理,OB=OC.
∴OA=OB=OC.
∴点A,B,C在以O为圆心,OA长为半径的圆上.
∴⊙O就是所求作的圆,
在上面的作图过程中.
∵直线DE和FG只有一个交点O,并且点O到A,B,C三个点的距离相等,
∴经过点A,B,C三点可以作一个圆,并且只能作一个圆.
定理:
不在同一直线上的三点确定一个圆我们的收获1。由定理可知:经过三角形三个顶点可以作一个圆.并且只能作一个圆.
2。经过三角形各顶点的圆叫做三角形的外接圆。
3。三角形外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。圆的内接三角 形三角形的外接 圆三角形 的外心ABCO直角三角形外心是斜边AB的中点钝角三角形外心在△ABC的外面三角形的外心是否一定在三角形的内部?(2)经过同一条直线三个点能作出一个圆吗?如图,假设过同一条直线l上三点A、B、C可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾,所以过同一条直线上的三点不能作圆.先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.什么叫反证法?课堂练习判断题:
1、过三点一定可以作圆 ( )
2、三角形有且只有一个外接圆 ( )
3、任意一个圆有一个内接三角形,并且只有一个内接三角形 ( )
4、三角形的外心就是这个三角形任意两边垂直平分线的交点 ( )
5、三角形的外心到三边的距离相等 ( )错对错对错思考: 如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.DO∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心. 如何解决“破镜重圆”的问题:圆心一定在弦的垂直平分线上思考:任意四个点是不是可以作一个圆?请举例说明. 不一定1. 四点在一条直线上不能作圆;3. 四点中任意三点不在一条直线可能作圆也可能作不出一个圆.ABCDABCDABCDABCD2. 三点在同一直线上, 另一点不在这条直线上不能作圆;1,如图,等腰⊿ABC中, ,
,点O为外心,
求外接圆的半径。巩固练习2、为美化校园,学校要把一块三角形空地扩建成一个圆形喷水池,在三角形三个顶点处各有一棵名贵花树(A、B、C),若不动花树,还要建一个最大的圆形喷水池,请设计你的实施方案。
3. 如果直角三角形的两条直角边分别是6,8,你能求出这个直角三角形的外接圆的半径吗?是多少?
4.在△ABC中,AB=AC=13,BC=10,试求这个三角形的外接圆的面积.我学会了什么 ?