2 圆的对称性
一、选择题(共10小题)
1.形如半圆型的量角器直径为4cm,放在 ( http: / / www.21cnjy.com )如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为( )
( http: / / www.21cnjy.com )
A. (﹣1,) B. (0,) C. (,0) D. (1,)
2.已知⊙O中,弦AB长为,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是( )
A. 1 B. 2 C. 3 D. 4
3.下列说法:
①若∠1与∠2是同位角,则∠1=∠2
②等腰三角形的高,中线,角平分线互相重合
③对角线互相垂直且相等的四边形是正方形
④等腰梯形是轴对称图形,但不是中心对称图形
⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧,
其中正确的个数是( )
A. 0 B. 1 C. 2 D. 3
4.(2013 邵东县模拟)⊙O的半径为R,若∠AOB=α,则弦AB的长为( )
A. B. 2Rsinα C. D. Rsinα
5.已知矩形ABCD的边AB=3,AD=4 ( http: / / www.21cnjy.com ),如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是( )
A. 3<r<5 B. 3<r≤4 C. 4<r≤5 D. 无法确定
6.已知圆的半径为5cm,圆心到弦的距离为4cm,那么这条弦长是( )
A. 3cm B. 6cm C. 8cm D. 10cm
7.半径为5的⊙O,圆心在原点O,点P(﹣3,4)与⊙O的位置关系是( )
A. 在⊙O内 B. 在⊙O上 C. 在⊙O外 D. 不能确定
8.一个点到圆周的最小距离为4cm,最大距离为9cm,则该圆的半径是( )
A. 2.5 cm或6.5 cm B. 2.5 cm C. 6.5 cm D. 5 cm或13cm
9.如图,在半径为1的⊙O中,直径AB把⊙ ( http: / / www.21cnjy.com )O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( )
( http: / / www.21cnjy.com )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
10.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC的面积s的取值范围是( )
( http: / / www.21cnjy.com )
A. ≤s≤ B. <s≤ C. ≤s≤ D. <s<
二、填空题(共10小题)(除非特别说明,请填准确值)
11.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?
12.一条弦AB分圆的直径为3cm和7cm两部分,弦和直径相交成60°角,则AB= _________ cm.
13.若⊙O的半径为13cm,圆心O到弦AB的距离为5cm,则弦AB的长为 _________ cm.
14.已知点P是半径为5的⊙O内一定点,且PO=4,则过点P的所有弦中,弦长可取到的整数值共有的条数是 _________ .
15.若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A _________ .
16.在下图所列的图形中选出轴对称图形: _________ .
( http: / / www.21cnjy.com )
17.作圆,使这些圆都经过线段AB的两个端点A和B,这些圆的圆心所组成的图形是 _________ .
18.以已知点O为圆心,可以画 _________ 个圆.
19.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC= _________ .
( http: / / www.21cnjy.com )
20.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D= _________ 度.
( http: / / www.21cnjy.com )
三、解答题(共10小题)(选答题,不自动判卷)
21.已知:AB交⊙O于C、D,且AC=BD.请证明:OA=OB.
( http: / / www.21cnjy.com )
22.如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.
( http: / / www.21cnjy.com )
23.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.
( http: / / www.21cnjy.com )
24.已知⊙O的半径为12cm,弦AB=16cm.
(1)求圆心O到弦AB的距离;
(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?
25.如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是的中点,
求证:∠OAE=∠EAD.(写出两种以上的证明方法)
( http: / / www.21cnjy.com )
26.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,
(1)求CD的长;
(2)若直线CD绕点E顺时针旋转15°,交⊙O于C、D,直接写出弦CD的长.
( http: / / www.21cnjy.com )
27.已知:如图,在⊙O中,∠A=∠C,求证:AB=CD(利用三角函数证明).
( http: / / www.21cnjy.com )
28.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,求弦AB的长.
( http: / / www.21cnjy.com )
29.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.
30.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.
( http: / / www.21cnjy.com )
参考答案与试题解析
一、选择题(共10小题)
1.(2012 江宁区二模 ( http: / / www.21cnjy.com ))形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为( )
( http: / / www.21cnjy.com )
A. (﹣1,) B. (0,) C. (,0) D. (1,)
考点: 圆心角、弧、弦的关系;坐标与图形性质;解直角三角形.
分析: 连接OQ、OP,求出∠POQ的度数,得 ( http: / / www.21cnjy.com )出等边三角形POQ,得出PQ=OQ=OP=2,∠OPQ=∠OQP=60°,求出∠AOQ度数,根据三角形的内角和定理求出∠QAO,求出AQ、OA,即可得出答案.
解答: 解:连接OQ、PO, ( http: / / www.21cnjy.com )则∠POQ=120°﹣60°=60,∵PO=OQ,∴△POQ是等边三角形,∴PQ=OP=OQ=×4cm=2cm,∠OPQ=∠OQP=60°,∵∠AOQ=90°﹣60°=30°,∴∠QAO=180°﹣60°﹣30°=90°,∴AQ=OQ=2cm,∵在Rt△AOQ中,由勾股定理得:OA==,∴A的坐标是(0,),故选B.
点评: 本题考查了圆心角、弧、弦之间的关系 ( http: / / www.21cnjy.com ),三角形的内角和定理,勾股定理,等边三角形的性质和判定等知识点,解此题的关键是构造三角形后求出OA的长,主要考查学生分析问题和解决问题的能力.
2.已知⊙O中,弦AB长为,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是( )
A. 1 B. 2 C. 3 D. 4
考点: 垂径定理;勾股定理.
分析: 连接OA,根据垂径定理求出AD,设⊙O的半径是R,则OA=R,OD=R﹣1,在Rt△OAD中,由勾股定理得出方程R2=(R﹣1)2+()2,求出R即可.
解答: ( http: / / www.21cnjy.com )解:连接OA,∵OC是半径,OC⊥AB,∴AD=BD=AB=,设⊙O的半径是R,则OA=R,OD=R﹣1,在Rt△OAD中,由勾股定理得:OA2=OD2+AD2,即R2=(R﹣1)2+()2,R=2,故选B.
点评: 本题考查了垂径定理和勾股定理,关键是构造直角三角形,用了方程思想.
3.下列说法:
①若∠1与∠2是同位角,则∠1=∠2
②等腰三角形的高,中线,角平分线互相重合
③对角线互相垂直且相等的四边形是正方形
④等腰梯形是轴对称图形,但不是中心对称图形
⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧,
其中正确的个数是( )
A. 0 B. 1 C. 2 D. 3
考点: 垂径定理;同位角、内错角、同旁内角;等腰三角形的性质;正方形的判定;等腰梯形的性质.
分析: 根据只有在平行线中,同位角才相等, ( http: / / www.21cnjy.com )等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,对角线互相平分、垂直、相等的四边形才是正方形,等腰梯形是轴对称图形,但不是中心对称图形,即可判断①②③④;画出反例图形即可判断⑤.
解答: 解:∵只有在平行线中,同位角才相等,∴①错误;∵等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,∴②错误;∵对角线互相平分、垂直、相等的四边形才是正方形,∴③错误;∵等腰梯形是轴对称图形,但不是中心对称图形,∴④正确;如图 ( http: / / www.21cnjy.com )AB是⊙O直径,CD是⊙O弦,AB平分CD,但AB和CD不垂直,∴⑤错误;故选B.
点评: 本题考查了等腰三角形性质,平行线的性质,同位角,等腰梯形性质,正方形的判定等知识点的应用,主要考查学生的辨析能力.
4.(2013 邵东县模拟)⊙O的半径为R,若∠AOB=α,则弦AB的长为( )
A. B. 2Rsinα C. D. Rsinα
考点: 垂径定理;解直角三角形.
分析: 过O作OC⊥AB于C,由垂径定理得出AB=2AC,根据等腰三角形性质求出∠AOC=∠BOC=∠AOB=,根据sin∠AOC=求出AC=Rsin,即可求出AB.
解答: ( http: / / www.21cnjy.com )解:过O作OC⊥AB于C,则由垂径定理得:AB=2AC=2BC,∵OA=OB,∴∠AOC=∠BOC=∠AOB=,在△AOC中,sin∠AOC=,∴AC=Rsin,∴AB=2AC=2Rsin,故选A.
点评: 本题考查了垂径定理,等腰三角形性质,解直角三角形等知识点,关键是求出AC的长和得出AB=2AC.
5.已知矩形ABCD的边AB=3,AD=4, ( http: / / www.21cnjy.com )如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是( )
A. 3<r<5 B. 3<r≤4 C. 4<r≤5 D. 无法确定
考点: 点与圆的位置关系.
分析: 四边形ABCD是矩形,则△ ( http: / / www.21cnjy.com )ABC是直角三角形.根据勾股定理得到:AC=5,B,C,D三点中在圆内和在圆外都至少有一个点,由题意可知一定是B在圆内,则半径r>3,一定是点C在圆外,则半径r<5,所以3<r<5.
解答: 解:∵AB=3,AD=4,∴AC=5,∴点C一定在圆外,点B一定在圆内,∴⊙A的半径r的取值范围是:3<r<5.故选A.
点评: 本题主要考查了勾股定理,以及点和圆的位置关系,可以通过点到圆心的距离与圆的半径比较大小,判定点和圆的位置关系.
6.已知圆的半径为5cm,圆心到弦的距离为4cm,那么这条弦长是( )
A. 3cm B. 6cm C. 8cm D. 10cm
考点: 垂径定理;勾股定理.
专题: 计算题.
分析: 连接OA,根据垂径定理求出AC=BC,根据勾股定理求出AC即可.
解答: 解:连接OA,∵OC⊥AB,OC过圆心O,∴AC=BC,由勾股定理得:AC===3(cm),∴AB=2AC=6(cm).故选B. ( http: / / www.21cnjy.com )
点评: 本题主要考查对勾股定理,垂径定理等知识点的理解和掌握,能求出AC=BC和AC的长是解此题的关键.
7.半径为5的⊙O,圆心在原点O,点P(﹣3,4)与⊙O的位置关系是( )
A. 在⊙O内 B. 在⊙O上 C. 在⊙O外 D. 不能确定
考点: 点与圆的位置关系;勾股定理.
专题: 计算题.
分析: 连接OP,根据勾股定理求出OP,把OP和圆的半径比较即可.
解答: 解:连接OP.∵P(﹣3,4),由勾股定理得:OP==5,∵圆的半径5,∴P在圆O上.故选B. ( http: / / www.21cnjy.com )
点评: 本题主要考查对勾股定理,直线与圆的位置关系等知识点的理解和掌握,能求出OP长和能根据直线与圆的位置关系性质进行判断是解此题的关键.
8.一个点到圆周的最小距离为4cm,最大距离为9cm,则该圆的半径是( )
A. 2.5 cm或6.5 cm B. 2.5 cm C. 6.5 cm D. 5 cm或13cm
考点: 点与圆的位置关系.
分析: 点P应分为位于圆的内部位 ( http: / / www.21cnjy.com )于外部两种情况讨论.当点P在圆内时,点到圆的最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解.
解答: 解:当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是13cm,因而半径是6.5cm;当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是5cm,因而半径是2.5cm.故选A.
点评: 本题考查了点与圆的位置关系,注意分两种情况进行讨论是解决本题的关键.
9.(2010 昌平区一模)如图,在半 ( http: / / www.21cnjy.com )径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( )
( http: / / www.21cnjy.com )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
考点: 动点问题的函数图象;垂径定理.
专题: 压轴题;动点型.
分析: 连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.
解答: 解:连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A. ( http: / / www.21cnjy.com )
点评: 解决有关动点问题的函数图象类习题时,关 ( http: / / www.21cnjy.com )键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.
10.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC的面积s的取值范围是( )
( http: / / www.21cnjy.com )
A. ≤s≤ B. <s≤ C. ≤s≤ D. <s<
考点: 等边三角形的性质;垂径定理.
专题: 压轴题;动点型.
分析: 根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.
解答: 解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选B. ( http: / / www.21cnjy.com )
点评: 此题首先要能够正确分析出要求的四边形的最小面积和最大面积,然后根据等边三角形的性质以及三角形的面积公式进行计算.
二、填空题(共10小题)(除非特别说明,请填准确值)
11.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?
考点: 圆的认识.
分析: 根据圆的定义:到定点的距离等于定长的点的集合可以得到答案.
解答: 解:可让牛牛站在原地旋转,壮壮拉直牛牛的手臂,绕牛牛走一圈,用脚在沙滩上画出一条曲线,就是一个圆.
点评: 本题考查了圆的认识,了解圆的定义是解决本题的关键.
12.一条弦AB分圆的直径为3cm和7cm两部分,弦和直径相交成60°角,则AB= 2 cm.
考点: 垂径定理.
分析: 根据题意画出图形,作弦的弦心距,根据题意可知,半径OA=5cm,ND=3cm,ON=2cm,利用勾股定理易求得NM=1cm,OM=cm,进一步可求出AM,进而求出AB.
解答: 解:根据题意画出图形,如图示,作OM⊥AB于M,连接OA,∴AM=BM,CD=10cm,ND=3cm,∴ON=2cm,∵∠ONM=60°,OM⊥AB,∴MN=1cm,∴OM=,在Rt△OMA中,AM===,∴AB=2AM=2. ( http: / / www.21cnjy.com )
点评: 本题主要考查了垂径定理,解决与弦有 ( http: / / www.21cnjy.com )关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,设法确定其中两边,进而利用勾股定理确定第三边.
13.若⊙O的半径为13cm,圆心O到弦AB的距离为5cm,则弦AB的长为 24 cm.
考点: 垂径定理;勾股定理.
专题: 计算题.
分析: 在△OBD中,利用勾股定理即可求得BD的长,然后根据垂径定理可得:AB=2BD,即可求解.
解答: 解:连接OB,∵在Rt△ODB中,OD=4cm,OB=5cm.由勾股定理得:BD2=OB2﹣OD2=132﹣52=144,∴BD=12,又OD⊥AB,∴AB=2BD=2×12=24cm.故答案是24. ( http: / / www.21cnjy.com )
点评: 本题主要考查垂径定理,圆中有关半径、弦长以及弦心距的计算一般是利用垂径定理转化成解直角三角形.
14.已知点P是半径为5的⊙O内一定点,且PO=4,则过点P的所有弦中,弦长可取到的整数值共有的条数是 8条 .
考点: 垂径定理;勾股定理.
专题: 推理填空题.
分析: 求出最长弦(直径)和最短弦(垂直于OP的弦),再求出之间的数,得出符合条件的弦,相加即可求出答案.
解答: 解:过P点最长的弦是直径,等于10,最短 ( http: / / www.21cnjy.com )的弦是垂直于PO的弦,根据勾股定理和垂径定理求出是6,10和6之间有7,8,9,每个都有两条弦,关于OP对称,共6条,1+1+6=8,故答案为:8条.
点评: 本题考查了勾股定理和垂径定理的应用,此题是一道比较容易出错的题目,考虑一定要全面,争取做到不重不漏.
15.若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A 内部 .
考点: 点与圆的位置关系;坐标与图形性质.
分析: 首先根据两点的坐标求得两点之间的距离,然后利用两点之间的距离和圆A的半径求得点与圆的位置关系.
解答: 解:∵A的坐标为(3,4),点P的坐标是(5,8),∴AP==2∵⊙A的半径为5,∴5>2∴点P在⊙A的内部故答案为:内部.
点评: 本题考查了点与圆的位置关系,解题得到关键是根据两点的坐标求得两点之间的距离.
16.在下图所列的图形中选出轴对称图形: ②③④⑥ .
( http: / / www.21cnjy.com )
考点: 圆的认识;轴对称图形.
分析: 根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形进行判断.
解答: 解:①⑤都不是轴对称图形,②③④⑥是轴对称图形,故答案为:②③④⑥.
点评: 本题主要考查轴对称的知识点,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.
17.作圆,使这些圆都经过线段AB的两个端点A和B,这些圆的圆心所组成的图形是 线段AB的垂直平分线 .
考点: 圆的认识;线段垂直平分线的性质.
分析: 利用圆的性质可以得到圆上的所有点到圆心的距离相等,从而得到所有圆心到A、B两点的距离相等,从而得到结论.
解答: 解:∵圆上的所有点到圆心的距离相等,∴无论圆心O在哪里,总有OA=OB,即:所有圆心到A、B两点的距离相等,∵到A、B两点的距离相等的点在线段AB的垂直平分线上,故答案为:线段AB的垂直平分线.
点评: 本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.
18.以已知点O为圆心,可以画 无数 个圆.
考点: 圆的认识.
分析: 圆心固定,半径不确定,可以画出无数个圆,由此选择答案解决问题.
解答: 解:以一点为圆心,以任意长为半径可以画无数个同心圆,故答案为:无数.
点评: 此题考查:圆心确定圆的位置,半径确定圆的大小这一知识.
19.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC= 48° .
( http: / / www.21cnjy.com )
考点: 圆的认识;平行线的性质.
分析: 根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.
解答: 解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,∴∠A=(180°﹣84°)=48°,又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.
点评: 本题考查了有关圆的知识:圆的半径都相等.也考查了等腰三角形的性质和平行线的性质.
20.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D= 25 度.
( http: / / www.21cnjy.com )
考点: 圆的认识;三角形内角和定理;三角形的外角性质.
分析: 解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.
解答: 解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°. ( http: / / www.21cnjy.com )
点评: 此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.
三、解答题(共10小题)(选答题,不自动判卷)
21.已知:AB交⊙O于C、D,且AC=BD.请证明:OA=OB.
( http: / / www.21cnjy.com )
考点: 垂径定理;线段垂直平分线的性质.
专题: 证明题.
分析: 过O作OE⊥AB于E,根据垂径定理求出CE=DE,求出AE=BE,根据线段的垂直平分线定理求出即可.
解答: 证明:过O作OE⊥AB于E,∵OE过圆心O,∴CE=DE,∵AC=BD,∴AE=BE,∵OE⊥AB,∴OA=OB. ( http: / / www.21cnjy.com )
点评: 本题考查了线段的垂直平分线定理和垂径定理的应用,主要培养学生运用定理进行推理的能力,题目比较典型,难度适中.
22.如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.
( http: / / www.21cnjy.com )
考点: 垂径定理.
专题: 证明题.
分析: 过O作OG⊥CD,由垂径定理可知OG垂直平分CD,再由平行线分线段成比例定理即可求解.
解答: 证明:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,则CG=DG,∵CE⊥CD,DF⊥CD,OG⊥CD,∴CE∥OG∥DF,∵CG=DG,∴OE=OF,∵OA=OB,∴AE=BF. ( http: / / www.21cnjy.com )
点评: 本题综合考查了垂径定理和平行线分线段成比例定理,解答此题的关键是作出辅助线,构造出平行线,再利用平行线的性质解答.
23.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.
( http: / / www.21cnjy.com )
考点: 圆心角、弧、弦的关系;平行线的判定与性质;三角形内角和定理;含30度角的直角三角形.
专题: 证明题.
分析: 连接OE,推出DE⊥OC,求出∠EDO=90°,根据OD=OC=OE,求出∠DEO=30°,求出∠EOC,根据OC⊥AB,求出∠AOC=90°,求出∠AOE=30°,即可求出答案.
解答: 证明: ( http: / / www.21cnjy.com )连接OE,∵AB⊥OC,DE∥AB,∴DE⊥OC,∴∠EDO=90°,∵D为OC中点,∴OD=OC=OE,∴∠DEO=30°,∴∠EOC=90°﹣30°=60°,∵OC⊥AB,∴∠AOC=90°,∴∠AOE=90°﹣60°=30°,即∠AOE=30°,∠COE=60°,∴=2(圆心角的度数等于它所对的弧的度数).
点评: 本题考查了三角形的内角和定理,平行线 ( http: / / www.21cnjy.com )的性质和判定,圆心角、弧、弦之间的关系,和30度角的直角三角形,主要考查学生运用定理进行推理的能力,题目比较好,综合性比较强.
24.已知⊙O的半径为12cm,弦AB=16cm.
(1)求圆心O到弦AB的距离;
(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?
考点: 垂径定理;勾股定理.
专题: 计算题.
分析: (1)连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,求出BC,再根据勾股定理求出OC即可;(2)弦AB的中点形成一个以O为圆心,以4cm为半径的圆周.
解答: (1)解: ( http: / / www.21cnjy.com )连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,∵OC⊥AB,OC过圆心O,∴AC=BC=AB=8cm,在Rt△OCB中,由勾股定理得:OC===4(cm),答:圆心O到弦AB的距离是4cm.(2)解:如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点到圆心O的距离都是4cm,∴如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成一个以O为圆心,以4cm为半径的圆周.
点评: 本题考查了勾股定理和垂径定理的应用,主要培养学生运用定理进行推理和计算的能力,题型较好,难度适中.
25.如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是的中点,
求证:∠OAE=∠EAD.(写出两种以上的证明方法)
( http: / / www.21cnjy.com )
考点: 圆心角、弧、弦的关系;三角形内角和定理.
专题: 证明题.
分析: 方法一:连接OB,利用同弧所对的圆周角是它所对圆心角的一半,三角形内角和定理,同弧所对的圆周角相等即可证明此题.方法二:连接OE,利用垂径定理可得OE⊥BC,再利用AD⊥BC,可得OE∥AD,然后即可证明.
解答: 证明:(1)连接OB,则∠AOB=2∠ACB,∠OAB=∠OBA,∵AD⊥BC,∴∠OAB=(180°﹣∠AOB),=90°﹣∠AOB=90°﹣∠ACB=∠DAC,∵E是弧BC的中点,∴∠EAB=∠EAC,∴∠EAO=∠EAB﹣∠OAB=∠EAC﹣∠DAC=∠EAD.(2)连接OE,∵E是的中点,∴弧BE=弧EC,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OE=OA,∴∠OAE=∠OEA,∴∠OAE=∠EAD. ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
点评: 此题主要考查学生对三角形内角和定理和圆 ( http: / / www.21cnjy.com )心角、弧、弦的关系等知识点的理解和掌握,此题难度不大,关键是作好辅助线,方法一:连接OB,方法二:连接OE,属于中档题.
26.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,
(1)求CD的长;
(2)若直线CD绕点E顺时针旋转15°,交⊙O于C、D,直接写出弦CD的长.
( http: / / www.21cnjy.com )
考点: 垂径定理;勾股定理.
分析: (1)作OH⊥CD于H,连接OD,求出AB=6cm,半径OD=3cm,在Rt△OHE中,OE=2cm,∠OEH=60°,由勾股定理求出OH=cm,在Rt△OHD中,由勾股定理得求出HD=cm,由垂径定理得出DC=2DH,代入即可;(2)求出OE,∠OEH=45°,根据勾股定理求出OH,在Rt△OHD中,由勾股定理得求出HD,由垂径定理得出DC=2DH,代入即可.
解答: 解:(1) ( http: / / www.21cnjy.com )作OH⊥CD于H,连接OD,∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=6cm,半径OD=3cm,∵在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=60°,∴OH=cm,在Rt△OHD中,由勾股定理得:HD=cm,∵OH⊥CD,∴由垂径定理得:DC=2DH=2cm;(2)作OH⊥CD于H,连接OD,∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=cm6,半径OD=3cm,∵若直线CD绕点E顺时针旋转15°,∴∠OEH=60°﹣15°=45°,在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=45°,∴OH=cm,在Rt△OHD中,由勾股定理得:HD==(cm),∵OH⊥CD,∴由垂径定理得:DC=2DH=2cm;即CD=2cm.
点评: 本题考查了垂径定理,勾股定理, ( http: / / www.21cnjy.com )含30度角的直角三角形性质,等腰直角三角形性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.
27.已知:如图,在⊙O中,∠A=∠C,求证:AB=CD(利用三角函数证明).
( http: / / www.21cnjy.com )
考点: 垂径定理;解直角三角形.
专题: 证明题.
分析: 作OE⊥AB于E,OF⊥CD于F,设⊙O半径为R,根据sinA=,、inC=和∠A=∠C求出OE=OF,由勾股定理求出AE=CF,由垂径定理得出DC=2DF,AB=2AE,即可求出答案.
解答: 证明:作OE⊥AB于E,OF⊥CD于F ( http: / / www.21cnjy.com )设⊙O半径为R,sinA=,sinC=,∴OE=RsinA,OF=RsinC,∵∠A=∠C, ∴sinA=sinC,∴OE=OF,由勾股定理得:CF2=OC2﹣OF2,AE2=OA2﹣OE2,∴AE=CF,由垂径定理得:DC=2DF,AB=2AE,∴AB=CD.
点评: 本题考查了勾股定理,垂径定理,解直角三角形等知识点,主要培养学生运用定理进行推理的能力.
28.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,求弦AB的长.
( http: / / www.21cnjy.com )
考点: 垂径定理;含30度角的直角三角形;勾股定理.
分析: 连接OA,根据等腰三角形性质求出∠D= ( http: / / www.21cnjy.com )∠OAD=30°,求出∠AOH=60°,根据垂径定理求出AB=2AH=2BH,求出∠HAO=30°,推出AO=2OH=C0,求出OH=CH=1cm,AO=2cm,在Rt△AHO中,由勾股定理求出AH即可.
解答: 解: ( http: / / www.21cnjy.com )连接OA,∵OA=OD,∴∠D=∠OAD=30°,∴∠AOH=30°+30°=60°,∵AB⊥DH,∴∠AHO=90°,AB=2AH=2BH,∴∠HAO=30°,∴AO=2OH=C0,∴OH=CH=1cm,∴AO=2cm,在Rt△AHO中,由勾股定理得:AH==cm,∴AB=2cm.
点评: 本题考查了三角形的内角和定理,含30度角的 ( http: / / www.21cnjy.com )直角三角形的性质,勾股定理,垂径定理,等腰三角形的性质等知识点的应用,主要考查学生综合运用性质进行计算和推理的能力,题目具有一定的代表性,是一道比较好的题目.
29.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.
考点: 垂径定理;等腰三角形的性质;勾股定理.
专题: 计算题.
分析: ①连接AD、OB,根据三线合 ( http: / / www.21cnjy.com )一得出AO过D,在Rt△OBD中,根据勾股定理求出BD,在Rt△ADB中,根据勾股定理求出AB即可.②求出BD、AD,根据勾股定理求出AB即可.
解答: 解:①如图,连接AD,连接OB,∵△ABC是等腰三角形,∴根据等腰三角形的性质(三线合一定理)得出,AO⊥BC,AO平分BC,∵OD⊥BC,∴根据垂直定理得:OD平分BC,即A、O、D三点共线,∴AO过D,∵等腰△ABC内接于半径为6cm的⊙O,∴OA=6cm,BD=DC,AD⊥BC,在Rt△OBD中,由勾股定理得:BD===4(cm),在Rt△ADB中,由勾股定理得:AB===4(cm),②如图:同法求出BD=4cm,AD=6cm﹣2cm=4cm,由勾股定理得:AB===4(cm),答:AB的长是4cm或4cm. ( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
点评: 本题考查了垂径定理,等腰三角形性质,勾 ( http: / / www.21cnjy.com )股定理等知识点的应用,关键是正确作辅助线后求出BD的长,题目具有一定的代表性,难度也适中,是一道比较好的题目.注意:分类讨论.
30.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.
( http: / / www.21cnjy.com )
考点: 垂径定理;等边三角形的判定与性质;含30度角的直角三角形.
专题: 计算题.
分析: 延长AO交BC于D,过O作OE⊥BC于 ( http: / / www.21cnjy.com )E,根据垂径定理求出BC=2BE,根据等边三角形的性质和判定求出AD=BD=AB=12,求出OD的长,根据含30度角的直角三角形性质求出DE即可
解答: 解: ( http: / / www.21cnjy.com )延长AO交BC于D,过O作OE⊥BC于E,∵OE过圆心O,OE⊥BC,∴BC=2CE=2BE(垂径定理),∵∠A=∠B=60°,∴DA=DB,∴△DAB是等边三角形(有一个角等于60°的等腰三角形是等边三角形),∴AD=BD=AB=12,∠ADB=60°,∴OD=AD﹣OA=12﹣7=5,∵∠OED=90°,∠ODE=60°,∴∠DOE=30°,∴DE=OD=(在直角三角形中,如果有一个角是30°,那么它所对的直角边等于斜边的一半),∴BE=12﹣=,∴BC=2BE=19(根据垂径定理已推出,在第三行).
点评: 本题考查了垂径定理,等边三角形的性质和判 ( http: / / www.21cnjy.com )定,含30度角的直角三角形的性质等知识点的理解和掌握,关键是正确作辅助线后求出BE的长,题目比较典型,难度适中.