【高考专辑】【专题5】2015年高考数学(文)总复习:解析几何【共2讲2份】

文档属性

名称 【高考专辑】【专题5】2015年高考数学(文)总复习:解析几何【共2讲2份】
格式 zip
文件大小 589.6KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2015-05-14 16:20:46

文档简介

课件24张PPT。第1讲 圆与圆锥曲线的基本问题
高考定位 1.圆的方程及直线与圆的位置关系是高考对本讲内容考查的重点,涉及圆的方程的求法、直线与圆的位置关系的判断、弦长问题及切线问题等.2.圆锥曲线中的基本问题一般以椭圆、双曲线、抛物线的定义、标准方程、几何性质等作为考查的重点,多为选择题或填空题.
      1.确定圆的方程时,常用到圆的几个性质:
(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长,弦心距,圆半径);
(2)圆心在过切点且与切线垂直的直线上;
(3)圆心在任一弦的中垂线上;
(4)两圆内切或外切时,切点与两圆圆心三点共线;
(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称.2.对涉及圆锥曲线上点到焦点距离或焦点弦问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.
3.椭圆、双曲线的方程形式上可统一为Ax2+By2=1,其中A,B是不等的常数,A>B>0时,表示焦点在y轴上的椭圆;B>A>0时,表示焦点在x轴上的椭圆;AB<0时表示双曲线.课件32张PPT。第2讲 圆锥曲线中的定点、定值、最值、范围问题
高考定位 圆锥曲线的综合问题包括:探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大.这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合运用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法进行求解,对考生的代数恒等变形能力、计算能力等有较高的要求.      1.定点、定值问题的处理方法
定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明,对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.
2.圆锥曲线的最值与范围问题的常见求法
(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;
(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:
①利用判别式来构造不等关系,从而确定参数的取值范围;
②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;
③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;
④利用基本不等式求出参数的取值范围;
⑤利用函数的值域的求法,确定参数的取值范围.
同课章节目录