中小学教育资源及组卷应用平台
专项素养训练三 解一元一次方程
合并同类项解一元一次方程
1.解下列方程:
(1)0.75x-0.25x=5;
(2)4x-3x=1.2+;
(3)4x-3x-3x=-9+8-1;
(4)-x-x+3x=1+2.
解:(1)合并同类项,得0.5x=5.
系数化为1,得x=10.
(2)合并同类项,得x=1.8.
(3)合并同类项,得-2x=-2.
系数化为1,得x=1.
(4)合并同类项,得x=3.
系数化为1,得x=.
移项解一元一次方程
2.解下列方程:
(1)3x+4=2x+1-3x;
(2)-2x-3=-2x-1-7x;
(3)x-3=5x+;
(4)x-=-+1.
解:(1)移项,得3x-2x+3x=1-4.
合并同类项,得4x=-3.
系数化为1,得x=-.
(2)移项,得-2x+2x+7x=3-1.
合并同类项,得7x=2.
系数化为1,得x=.
(3)移项,得x-5x=3+.
合并同类项,得-x=.
系数化为1,得x=-.
(4)移项,得x+=+1.
合并同类项,得x=.
系数化为1,得x=.
去括号解一元一次方程
3.解下列方程:
(1)(3-x)-1=-2;
(2)4(x-1)-x=2(x+);
(3)2(6-0.5y)=-3(2y-1);
(4)x-6(2x+1)=14+9(x-2).
解:(1)去括号,得1-x-1=-2.
合并同类项,得-x=-2.
系数化为1,得x=6.
(2)去括号,得4x-4-x=2x+1.
移项,得4x-x-2x=4+1.
合并同类项,得x=5.
(3)去括号,得12-y=-6y+3.
移项,得-y+6y=3-12.
合并同类项,得5y=-9.
系数化为1,得y=-.
(4)去括号,得x-12x-6=14+9x-18.
移项,得x-12x-9x=6+14-18.
合并同类项,得-20x=2.
系数化为1,得x=-.
去分母解一元一次方程
4.解下列方程:
(1)(广元中考)+=4;
(2)(凉山中考)x-=1+;
(3)(1-)=-x+1;
(4)-=1-.
解:(1)去分母,得3(x-3)+2(x-1)=24.
去括号,得3x-9+2x-2=24.
移项,得3x+2x=24+9+2.
合并同类项,得5x=35.
系数化为1,得x=7.
(2)去分母,得6x-3(x-2)=6+2(2x-1).
去括号,得6x-3x+6=6+4x-2.
移项,得6x-3x-4x=6-6-2.
合并同类项,得-x=-2.
系数化为1,得x=2.
(3)去分母,得10(1-)=-21x+6.
去括号,得10-5x-15=-21x+6.
移项,得-5x+21x=-10+15+6.
合并同类项,得16x=11.
系数化为1,得x=.
(4)去分母,得
8(x-1)-3(4-3x)=12-4(1-2x).
去括号,得8x-8-12+9x=12-4+8x.
移项,得8x+9x-8x=8+12+12-4.
合并同类项,得9x=28.
系数化为1,得x=.
解较为复杂的一元一次方程
5.解下列方程:
(1)-=1;
(2)[(-1)-2]-x=2;
(3)=1.
解:(1)原方程化为-=1.
去分母,得30x-7(17-20x)=21.
去括号,得30x-119+140x=21.
移项,得30x+140x=21+119.
合并同类项,得170x=140.
系数化为1,得x=.
(2)去小括号,得(--2)-x=2.
去括号,得-1-3-x=2.
移项,得-x=2+1+3.
合并同类项,得-=6.
系数化为1,得x=-8.
(3)原方程去分母4,得1-=4.
去分母3,得3-1-(1-x)=12.
去分母2,得4-(1-x)=24.
去括号,得4-1+x=24.
移项,得x=24-4+1.
合并同类项,得x=21.
特殊法解一元一次方程
6.在解方程3(x+1)-(x-1)=2(x-1)-(x+1)时,可先将(x+1),(x-1)分别看成整体进行移项、合并同类项,得方程(x+1)=(x-1),然后再继续求解,这种方法叫做整体求解法.请用这种方法解方程:5(2x+3)-(x-2)=2(x-2)-(2x+3).
解:移项、合并同类项,得(2x+3)=(x-2).
去分母,得22(2x+3)=11(x-2).
去括号,得44x+66=11x-22.
移项、合并同类项,得33x=-88.
系数化为1,得x=-.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专项素养训练三 解一元一次方程
合并同类项解一元一次方程
1.解下列方程:
(1)0.75x-0.25x=5;
(2)4x-3x=1.2+;
(3)4x-3x-3x=-9+8-1;
(4)-x-x+3x=1+2.
移项解一元一次方程
2.解下列方程:
(1)3x+4=2x+1-3x;
(2)-2x-3=-2x-1-7x;
(3)x-3=5x+;
x-=-+1.
去括号解一元一次方程
3.解下列方程:
(1)(3-x)-1=-2;
(2)4(x-1)-x=2(x+);
(3)2(6-0.5y)=-3(2y-1);
(4)x-6(2x+1)=14+9(x-2).
去分母解一元一次方程
4.解下列方程:
(1)(广元中考)+=4;
(2)(凉山中考)x-=1+;
(3)(1-)=-x+1;
(4)-=1-.
解较为复杂的一元一次方程
5.解下列方程:
(1)-=1;
(2)[(-1)-2]-x=2;
(3)=1.
特殊法解一元一次方程
6.在解方程3(x+1)-(x-1)=2(x-1)-(x+1)时,可先将(x+1),(x-1)分别看成整体进行移项、合并同类项,得方程(x+1)=(x-1),然后再继续求解,这种方法叫做整体求解法.请用这种方法解方程:5(2x+3)-(x-2)=2(x-2)-(2x+3).
21世纪教育网(www.21cnjy.com)