课件9张PPT。22.3 实际问题与二次函数第1课时 用二次函数解决利润等代数问题教学目标能够理解生活中文字表达与数学语言之间的关系,建立数学模型.利用二次函数y=ax2+bx+c(a≠0)图象的性质解决简单的实际问题,能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.重点难点重点
把实际生活中的最值问题转化为二次函数的最值问题.
难点
1.读懂题意,找出相关量的数量关系,正确构建数学模型.
2.理解与应用函数图象顶点、端点与最值的关系.教学设计一、复习旧知,引入新课
1.二次函数常见的形式有哪几种?
二次函数y=ax2+bx+c(a≠0)的图象的顶点坐标是________,对称轴是________;二次函数的图象是一条________,当a>0时,图象开口向________,当a<0时,图象开口向________.
2.二次函数知识能帮助我们解决哪些实际问题呢?教学设计二、教学活动
活动1:问题:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?教学设计活动2:问题:某商场的一批衬衣现在的售价是60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为每件40元,如何定价才能使利润最大?
1.问题中的定价可能在现在售价的基础上涨价或降价,获取的利润会一样吗?
2.如果你是老板,你会怎样定价?
3.以下问题提示,意在降低题目梯度,提示考虑x的取值范围.教学设计(1)若设每件衬衣涨价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期少卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?
(2)若设每件衬衣降价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期多卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?
根据两种定价可能,让学生自愿分成两组,分别计算各自的最大利润;老师巡视,及时发现学生在解答过程中的不足,加以辅导;最后展示学生的解答过程,教师与学生共同评析.教学设计活动3:达标检测
某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.
(1)求出y与x之间的函数关系式;
(2)写出每天的利润w与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
答案:(1)y=-x+180;(2)w=(x-100)y=-(x-140)2+1 600,当售价定为140元,w最大为1 600元.教学设计三、课堂小结与作业布置
课堂小结
通过本节课的学习,大家有什么新的收获和体会?尤其是数形结合方面你有什么新的体会?
作业布置
教材第51~52页 习题第1~3题,第8题.课件9张PPT。22.3 实际问题与二次函数第2课时 二次函数与几何综合运用教学目标能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.重点难点重点
应用二次函数解决几何图形中有关的最值问题.
难点
函数特征与几何特征的相互转化以及讨论最值在何处取得.教学设计一、引入新课
上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用.教学设计二、教学过程
问题1:教材第49页探究1.
用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l为多少米时,场地的面积S最大?
分析:
提问1:矩形面积公式是什么?
提问2:如何用l表示另一边?
提问3:面积S的函数关系式是什么?教学设计问题2:如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
分析:
提问1:问题2与问题1有什么不同?
提问2:我们可以设面积为S,如何设自变量?
提问3:面积S的函数关系式是什么?
答案:设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.
提问4:如何求解自变量x的取值范围?墙长32 m对此题有什么作用?
答案:0<60-2x≤32,即14≤x<30.
提问5:如何求最值?教学设计问题3:将问题2中“墙长为32 m”改为“墙长为18 m”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
提问1:问题3与问题2有什么异同?
提问2:可否模仿问题2设未知数、列函数关系式?
提问3:可否试设与墙平行的一边为x米?则如何表示另一边?教学设计教学设计三、回归教材
阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?
四、基础练习
1.教材第51页的探究3,教材第57页第7题.
2.阅读教材第52~54页.
五、课堂小结与作业布置
课堂小结
1.利用求二次函数的最值问题可以解决实际几何问题.
2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.
作业布置
教材第52页 习题第4~7题,第9题.课件16张PPT。22.3 实际问题与二次函数 第1课时 二次函数与图形面积h k 自变量 二次函数 取值范围 知识点1 求二次函数的最值问题1.(4分)关于二次函数y=x2-8x+c的最小值为0,那么c的值等于( )
A.4 B. 8 C.-4 D.16
2.(4分)函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )
A.4和-3 B.-3和4
C.5和-4 D.-1和4
3.(4分)二次函数y=-3x2-6x-1有最____值____,此时x=____.DC大2-1知识点2 二次函数与图形面积问题 4.(4分)已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( )
A.25 cm2 B.50 cm2
C.100 cm2 D.不确定
5.(4分)用一定长度的绳子围成一个矩形,若矩形的一边长x(m)与面积y(m2)满足关系式y=-(x-12)2+144(0<x<24),则该矩形面积的最大值为____,此时x=____.B144126.(4分)某农场要盖一排三间长方形的羊圈,打算一面利用长为16 m的旧墙,其余各面用木材围成栅栏,栅栏的总长为24 m,设每间羊圈与墙垂直的一边长为x(m),三间羊圈的总面积为S(m2),则S与x的函数关系式为 ,x的取值范围是 ,当x=____时,面积S最大,
最大面积为____.S=-4x2+24x2≤x<6336m27.(8分)如图,在△ABC中 ,∠B=90°,AB=22 cm,BC=20 cm,点P从点A开始沿AB边向点B以2 cm/s的速度移动,点Q从点B开始沿BC向点C以1 cm/s的速度移动,P,Q分别从A,B同时出发.
(1)求四边形APQC的面积y(cm2)与运动时间x(s)之间的函数关系式,并写出x的取值范围.
(2)求四边形APQC面积的最小值,并求出此时x的值.8.(8分)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数解析式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝的面积S最大?最大面积是多少?一、选择题(共6分)
9.由长8 m的铝合金条制成如图所示形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )
A. m2 B. m2 C. m2 D.4 m2二、填空题(第小题6分,共12分)
10.如图所示,线段AB=6,点C是AB上一点,点D是AC的中点,分别以AD,DC,CB为边作正方形,则AC=____时,三个正方形的面积之和最小.C4S=2x2-2x+1 13.(15分)如图,等腰直角三角形ABC以2 m/s的速度沿直线l向正方形移动,直到AB与CD重合.设x s时,三角形与正方形重合部分的面积为y m2.
(1)写出y与x之间的函数解析式;
(2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?解:(1)因为三角形与正方形的重合部分是等腰直角三角形,且直角边都是2x,所以y=2x2(0≤x≤5)
(2)在y=2x2中,当x=2时,y=8;当x=3.5时,y=24.5
(3)在y=2x2中,因为当y=50时,2x2=50,所以x2=25,x1=5,x2=-5(舍去).答:当重叠部分的面积是正方形面积的一半时,三角形移动了5 s【综合运用】
14.(15分)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动,如果P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折得到△PCQ,试判断点C是否落在直线AB上,并说明理由.课件13张PPT。22.3 实际问题与二次函数 第2课时 二次函数与商品利润单件利润= ;总利润= .售价一成本销售量×单件利润知识点 二次函数与最大利润问题 1.(4分)某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y与x的函数关系是( )
A.y=x2+a B.y=a(x-1)2
C.y=a(1-x)2 D.y=a(1+x)2
2.(4分)一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,则y关于x的函数关系式为( )
A.y=60(1-x)2 B.y=60(1-x2)
C.y=60-x2 D.y=60(1+x)2DA3.(4分)喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x为正整数),每星期销售该商品的利润为y元,则y与x的函数关系式为( )
A.y=-10x2+100x+2 000
B.y=10x2+100x+2 000
C.y=-10x2+200x
D.y=-10x2-100x+2 000
4.(4分)一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )
A.5元 B.10元 C.0元 D.6元AA5.(4分)出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=____元时,一天出售该种手工艺品的总利润最大.
6.(8分)将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了获得最大利润,每个售价应定为多少元?
4设售价在90元的基础上上涨x元,总利润为y元,由题意,得y=(10+x)(400-20x)=-20x2+200x+4000=-20(x-5)2+4500.∴当x=5时,y有最大值,最大值为4500.此时90+x=95.即售价为95元时可获得最大利润7.(12分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?205万元 3 二、解答题(共48分)
10.(14分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;
(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?
(1)y=(80-60+x)(300-10x)=-10x2+100x+6000
(2)y=-10x2+100x+6000=-10(x-5)2+6250.∵a=-10<0,∴当x=5时,y有最大值,其最大值为6250,即单价定为85元时,每月销售该商品的利润最大,最大利润为6250元11.(14分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?【综合运用】
12.(20分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.
(1)李明在开始创业的第1个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3 000元,那么政府每个月为他承担的总差价最少为多少元?(1)当x=20时,y=-10x+500=-10×20+500=300.∴政府这个月为他承担的总差价为:300×(12-10)=300×2=600(元) (2)依题意,得w=(x-10)(-10x+500)=-10x2+600x-5000=-10(x-30)2+4000.∵a=-10<0,∴当x=30时,w有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元 (3)由题意,得-10x2+600x-5000=3000.解得x1=20,x2=40.∵a=-10<0,抛物线开口向下,建立直角坐标系,并画出y=-10x2+600x-5000的函数图象.∴结合图象可知:当20≤x≤40时,w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12-10)(-10x+500)=-20x+1000.∵-20<0,p随着x的增大而减小,∴当x=25时,p有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元课件14张PPT。22.3 实际问题与二次函数第3课时 建立二次函数模型解决实际问题 建立二次函数模型解决建筑类实际问题的一般步骤:
(1)根据题意建立适当的 ;
(2)把已知条件转化为 ;
(3)合理设出函数 ;
(4)利用 法求出函数解析式;
(5)根据求得的解析式进一步分析、判断并进行有关的计算 直角坐标系点的坐标解析式待定系数知识点 建立直角坐标系解决抛物线形问题 1.(5分)某大学的校门是一抛物线形水泥建筑物(如图),大门的地面宽度为8 m,两侧距离地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m,则校门的高(精确到0.1 m,水泥建筑物的厚度不计)为( )
A.8.1 m B.9.1 m
C.10.1 m D.12.1 m
2.(5分)某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水呈抛物线状(抛物线所在平面与地面垂直).如果抛物线的最高点M离墙1 m,离地面 m(如图所示),则水流落地点离墙的距离OB是( )
A.2 m B.3 m
C.4 m D.5 mBB3.(5分)平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名同学拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳子的手的水平距离1 m,2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为( )
A.1.5 m B.1.625 m
C.1.66 m D.1.67 mB15A 48m三、解答题(共44分)
9.(14分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20 m,顶点M距水面6 m(即MO=6 m),小孔顶点N距水面4.5 m(即NC=4.5 m).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求出此时大孔的水面宽度EF.解:设大孔对应的抛物线所对应的函数关系式为y=ax2+6.依题意,得B(10,0),∴a×102+6=0.解得a=-0.06.即y=-0.06x2+6.当y=4.5时,-0.06x2+6=4.5.解得x=±5,∴DF=5,EF=10.即水面宽度为10米【综合运用】
11.(16分)如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.
(1)当h=2.6时,求y与x关系式(不要求写出自变量x的取值范围);
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.