(共18张PPT)
第一章 动量守恒定律
1 动量
1
生活中的碰撞现象
车辆的碰撞
生活中的碰撞现象
打台球
生活中的碰撞现象
打网球
碰撞过程中,遵循什么样的物理规律呢?
当A、B两球的质量相等时,碰撞前后速度有什么关联?速度之和是否相等?
A、B球的速度发生互换,速度之和相等.
当C球的质量大于B球的质量时,碰撞前后速度有什么关联?
速度之和是否相等?
碰撞后B球的速度大于碰撞前C球的速度,速度之和并不相等.
交流讨论
质量大的球被碰起,质量小的球反弹,且反弹高度比质量大的球高
一、寻求碰撞中的不变量
2、碰后两球的速度有什么特点?这种现象可能与什么因素有关?
质量小的球获得了比质量大的球更大一些的反弹速度
3、两球碰撞前后速度之和是否相等?是否交换了速度?
不相等
4、如何寻找并验证碰撞过程中什么量保持不变?
可以分别测出碰撞前后的速度大小、物体的质量大小
1、用质量小的球去碰撞质量大的球,碰后二者的运动情况是怎样的?
与质量有关
不是
如图, 两辆小车都放在滑轨上,用一辆运动的小车碰撞一辆静止的小车,碰撞后两辆小车粘在一起运动。小车的速度用滑轨上的光电计时器测量。
使用天平测量出两小车的质量,并利用光电门传感器测量出两小车的碰撞前、后的速度。
一、寻求碰撞中的不变量
实验设计
一、寻求碰撞中的不变量
实验操作
碰撞前
碰撞后
碰撞前
碰撞后
0.33
0.32
0.34
0.33
0.41
0.40
此实验中两辆小车碰撞前后,动能之和并不相等,但是质量与速度的乘积之和却基本不变。
实验结论:
mv这个物理量具有特别的意义
动量
实验探究:寻求碰撞中的不变量
表 两辆小车的质量和碰撞前后的速度
二、动量
在物理学中,把物体的质量 m 和速度 v的乘积叫做物体的动量 p.
在国际单位制中,动量的单位是千克 米每秒( kg m/s)
是状态量,与某一时刻相对应。速度取瞬时速度。
1. 定义:
p = mv
3. 单位:
对动量的理解
(2) 瞬时性:
(1) 矢量性:
矢量,方向由速度方向决定,与该时刻的速度方向相同
(3) 相对性:
与参考系的选择有关,一般以地球为参考系。速度v为物体的对地速度。
2. 定义式:
4、动量的变化量( Δp)
(1)定义:在某个过程中,物体的末动量与初动量的矢量差即物体动量的变化量。
(2)表达式: 。
①动量的变化等于末状态动量减初状态的动量,其方向与Δv的方向相同(若在同一直线上,可用代数运算)。
②动量的变化量也叫动量的增量或动量的改变量。
③不在同一直线上的动量变化的运算,遵循平行四边形定则。
5、动量和动能的比较
项目 动量 动能
物理意义
表达式
标矢性
换算关系
描述机械运动状态的物理量
p = mv
矢量
标量
,
例题1.如图所示,甲、乙两人在水平路面上沿相反方向匀速运动。已知甲的质量为40 kg,速度大小v1=5 m/s;乙的质量为80 kg,速度大小v2=2.5 m/s。以向右运动为正方向,则以下说法正确的是
A.甲的动量比乙的动量大 B.甲、乙两人的动量相同
C.甲的动量为200 kg·m/s D.乙的动量为200 kg·m/s
p甲=m甲·(-v1)=-200 kg·m/s,负号表示动量方向向左,p乙=m乙v2=200 kg·m/s,故D正确。
√
例题2:若某个物体的动量发生了变化,则物体运动的 ( )
A. 速度大小一定改变 B. 动能一定改变了
C. 加速度一定不为零 D. 合外力可能为零
【解析】动量是矢量,动量发生变化,对于同一物体,质量不变,一定是速度发生变化(可能只是方向变化);因此物体的加速度不为零,由牛顿第二定律可知合外力一定不为零;Ek=p2/2m,若动量方向改变而大小不变,则动能可能不变(如匀速圆周运动)。
例题3.(2023·江苏省南师大灌云附中高二月考)质量为0.1 kg的小球从1.25 m高处自由落下,与地面碰撞后反弹回0.8 m高处。取竖直向下为正方向,
g=10 m/s2,求:
(1)小球与地面碰前瞬间的动量大小;
答案 0.5 kg·m/s
设小球从1.25 m高处自由落下碰地前瞬间的速度大小为v1,则有v12=2gh1
所以小球与地面碰前瞬间的动量p1=mv1=0.1×5 kg·m/s=0.5 kg·m/s
(2)小球与地面碰撞过程中动量的变化。
答案 0.9 kg·m/s,方向竖直向上
设小球碰地后瞬间的速度大小为v2,则有
v22=2gh2,可得
取竖直向下为正方向,则小球与地面碰撞过程中动量的变化为
Δp=-mv2-mv1=-0.1×(4+5) kg· m/s=-0.9 kg· m/s,负号表示方向竖直向上。
小结
动量
公式
单位
三性
动量和动能
动量的变化
表示为:p=mv
国际单位制:千克米每秒( kg m/s)
(1) 矢量性
(2) 瞬时性
(3) 相对性
定量关系:
(1) 公式:Δ p = mΔ
(2)方向:与Δ 的方向相同
(3)预算:代数运算或平行四边形定则