正比例和反比例的意义
一、成正比例的量
在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一 种量也随着变化,
例如: (1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
生活中还有哪些成正比例的量?
如: A.长方形的宽一定,面积和长成正比例。
B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。
C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
D.地砖的面积一定,教室地板面积和地砖块数成正比例。
2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,
3小时行驶270千米,4小时行驶360千米,
5小时行驶450千米,6小时行驶540千米,
7小时行驶630千米,8小时行驶720千米……
填表
一列火车行驶的时间和路程
时间
路程
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
根据计算,你发现了什么
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)
(2)小结:
同学们通过填表,交流,知道时间和路程是. ( http: / / www.21cnjy.com )两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2、例2:
(1)花布的米数和总价表
数量 1 2 3 4 5 6 7 ……
总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……
(2)观察图表,发现规律
用式子表示它们的关系:总价/米数=单价(一定)
3、正比例的意义
(1)两种相关联的量,一种量变化,另一种量 ( http: / / www.21cnjy.com )也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来? x/y=k(一定)
PS:三个要素:
两种相关联的量;
其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
两个量的比值一定。
相对应的点一定在这条直线上。(作图)
练习
观下图表,回答问题:
时间(时) 1 2 3 4 5 6 7
米 数 22 44 66 88 11 132 154
( )和( )是两种相关联的量,( )随着( )的变化而变化的,( )一定,
时间和米数是( )的量。
作图:
二、判断下面各题中的两种量是不是成正比例关系,并说理。
白糖单价一定,白糖数量和总价;
稻谷的出米率一定,碾成大米重量和稻谷重量;
一个人的身长和体重;
4、长方形的长一定,宽和面积;
5、长方形的面积一定,长和宽。
三、练习:
请举出成正比例关系的量。
圆周长与圆半径;
圆面积与圆半径;
正方形的周长与边长。
说一说成正比例关系的量的变化特征。
正比例和反比例的意义
二、成反比例的量
成反比例的量 :两种相关联的量,一种量变化 ( http: / / www.21cnjy.com ),另一种量也随着变化,如果这两种 量中相对应的两个数的积一定, 这两种量就叫做成反比例的量, 它们的关系叫做反比例关系。
用字母表示。 如果用字母 X 和 Y 表示两种相关联的量,用 K 表示它们的乘积(一定),
反比例关系的式子可以表示为 X Y=K(一定)
2.生活中还有哪些成反比例的量?
举例(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
反比例关系也可以用图像来表示。
表示两个量的点不在同一条直线上,点所连接起来是一条曲线。
图像特征不要求掌握。
4.小结。 说一说成反比例关系的量的变化特征。
例1、(反比例的意义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。这两种量有什么关系?
每小时加工零件的个数/个 20 30 40 60 80 …
加工的时间/时 12 8 6 4 3 …
作图:
分析与解:(1)从上表可以 ( http: / / www.21cnjy.com )看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20 × 12 = 240,30 × 8 = 240,40 × 6 = 240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零 ( http: / / www.21cnjy.com )件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数 × 加工的时间 = 零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和 ( http: / / www.21cnjy.com )正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy = K(一定)。
例2、(判断是否成反比例)总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:
每公顷的产量 × 公顷数 = 总产量(一定)
所以每公顷的产量和公顷数成反比例。
例3、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。
和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。
点评:有些相关联的量,虽然也是一种 ( http: / / www.21cnjy.com )量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例4、(综合题1)(1)长方形的面积一定,长和宽成反比例吗?为什么?(2)长方形的周长一定,长和宽成反比例吗?为什么?
分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
(1)因为长方形的长 × 宽 = 长方形的面积(一定),所以长和宽成反比例。
(2)长方形的周长 = (长+宽)× 2 ,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。
例5、(综合题2)分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和 ( http: / / www.21cnjy.com )天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。
(1)因为每天吃的千克数 × 天数 = 大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。
(2)因为 = 每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。
(3)因为 = 天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。
练习:
1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?
表格1
数量/本 1 3 6 8 10 20 ……
总价/元 4 12 24 32 40 80 ……
表格2
单价/元 1.5 2 3 4 5 6 ……
总价/元 6 8 12 16 20 24 ……
表格3 用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:
单价/元 1.5 2 3 4 5 6 ……
数量/本 40 30 20 15 12 10 ……
2、用一批纸装订练习本,每本25页,可以装订400本。如果要装订500本,每本有X页。
题中( )量一定,关系式:( )○( )=( )(一定),( )和( )成( )比例。
3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。如果改用边长0.4米的正方形地砖,需要Y块。
题中( )量一定,关系式:( )○( )=( )(一定),( )和( )成( )比例。
4、在圆柱的侧面积、底面周长、高这三种量中
当底面周长一定时,( )与( )成( )比例;
当高一定时,( )与( )成( )比例;
当侧面积一定时,( )与( )成( )比例。
5、在被除数、除数、商这三种量中,
当( )一定时,( )与( )成正比例;
当( )一定时,( )与( )成反比例;
6、当 a × b = c( a、b、c 为三种量,且均不为0)。
( )一定,( )与( )成( )比例;
( )一定,( )与( )成( )比例;
( )一定,( )与( )成( )比例;
7、判断。
(1)、工作总量一定,工作效率和工作时间成反比例。( )
(2)、图上距离和实际距离成正比例。( )
(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。( )
(4)、分数的大小一定,它的分子和分母成正比例。 ( )
(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。 ( )
(6)、两种相关联的量,不成正比例,就成反比例。 ( )
(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。 ( )
(8)在400米赛跑中,跑步的速度和所用时间成反比例。 ( )
(9)工作总量一定,已完成的量和未完成的量成反比例。 ( )
(10)正方体的棱长和体积成正比例。 ( )
(11)被除数一定,除数和商成反比例。 ( )
(12)圆的周长和它的直径成正比例。 ( )
8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。
(1)、装配一批电视机,每天装配台数和所需的天数( )。
(2)、正方形的边长和周长( )。
(3)、水池的容积一定,水管每小时注水量和所用时间( )。
(4)、房间面积一定,每块砖的面积和铺砖的块数( )。
(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数( )。
(6)、在一定时间里,每小时加工零件的个数和加工零件的个数( )。
9、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?
10、某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?
(1)把下表填写完整。
造纸时间/时 1 2 3 4 ……
造纸吨数/吨 1.5 ……
(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。 吨数/吨
6
5
4
3
2
1
0
1 2 3 4 5 6 7 时间/时
(3)造纸吨数与造纸时间成正比例吗?为什么?
(4)根据图像判断, 5小时造纸多少吨?
【试题答案】
1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?
表格1
数量/本 1 3 6 8 10 20 ……
总价/元 4 12 24 32 40 80 ……
= 4, = 4, = 4 …… 因为 = 单价(一定),所以单价一定时,总价和数量成正比例。
表格2
单价/元 1.5 2 3 4 5 6 ……
总价/元 6 8 12 16 20 24 ……
= 4, = 4, = 4 …… 因为 = 数量(一定),所以数量一定时,总价和单价成正比例。
表格3 用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:
单价/元 1.5 2 3 4 5 6 ……
数量/本 40 30 20 15 12 10 ……
1.5 × 40 = 60 ,2 × 30 = 60 ,4 × 15 = 60 ……
因为单价 × 数量 = 总价(一定),所以总价一定时,单价和数量成反比例。
2、用一批纸装订练习本,每本25页,可以装订400本。如果要装订500本,每本有X页。
题中( 纸的总页数 )量一定,
关系式:(每本页数) × (装订本数)=(纸的总页数)(一定),
(每本页数 )和(装订本数)成(反)比例。
3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。如果改用边长0.4米的正方形地砖,需要Y块。
题中(会客室地面面积)量一定,
关系式:(每块砖的面积)×(砖的块数)=(会客室地面面积)(一定),
(每块砖的面积)和(砖的块数)成(反)比例。
4、在圆柱的侧面积、底面周长、高这三种量中
当底面周长一定时,( 侧面积 )与( 高 )成(正)比例;
当高一定时,( 侧面积 )与( 底面周长 )成(正)比例;
当侧面积一定时,( 底面周长 )与( 高 )成(反)比例。
5、在被除数、除数、商这三种量中,
当( 除数 )一定时,( 被除数 )与( 商 )成正比例;
当( 被除数 )一定时,( 除数 )与( 商 )成反比例;
6、当 a × b = c( a、b、c 为三种量,且均不为0)。
( c )一定,( a )与( b )成( 反 )比例;
( a )一定,( c )与( b )成( 正 )比例;
( b )一定,( c )与( a )成( 正 )比例;
7、判断。
(1)、工作总量一定,工作效率和工作时间成反比例。 ( √ )
(2)、图上距离和实际距离成正比例。 ( × )
(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。( × )
(4)、分数的大小一定,它的分子和分母成正比例。 ( √ )
(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。 ( √ )
(6)、两种相关联的量,不成正比例,就成反比例。 ( × )
(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。 ( √ )
(8)在400米赛跑中,跑步的速度和所用时间成反比例。 ( √ )
(9)工作总量一定,已完成的量和未完成的量成反比例。 ( × )
(10)正方体的棱长和体积成正比例。 ( × )
(11)被除数一定,除数和商成反比例。 ( √ )
(12)圆的周长和它的直径成正比例。 ( √ )
8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。
(1)、装配一批电视机,每天装配台数和所需的天数( 反比例 )。
(2)、正方形的边长和周长( 正比例 )。
(3)、水池的容积一定,水管每小时注水量和所用时间( 反比例 )。
(4)、房间面积一定,每块砖的面积和铺砖的块数( 反比例 )。
(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数( 反比例 )。
(6)、在一定时间里,每小时加工零件的个数和加工零件的个数( 正比例 )。
9、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?
答:小张的说法是错误的,体重和身高不是两种相关联的量,体重和身高不成比例。
10、某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?
(1)把下表填写完整。
造纸时间/时 1 2 3 4 ……
造纸吨数/吨 1.5 3 4.5 6 ……
(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。
(3)造纸吨数与造纸时间成正比例吗?为什么?
因为 = 每小时造纸吨数(一定),所以每小时造纸吨数一定时,造纸吨数与造纸时间成正比例。吨数/吨
6 ●
5
4
3 ●
2
1
0
1 2 3 4 5 6 7 时间/时
(4)根据图像判断,5小时造纸多少吨?
根据图像判断,5小时造纸7.5吨
●
●