18.2.3 正方形课件

文档属性

名称 18.2.3 正方形课件
格式 zip
文件大小 937.9KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2015-05-27 21:37:51

图片预览

文档简介

课件24张PPT。18.2.3正方形正方形矩形实验与观察一:折叠矩形纸片正方形实验与观察二:转动菱形模型1. 正方形的定义 由正方形的定义可知,
正方形既是有一组邻边相等的矩形,又是 有一个角为直角的菱形。如图(1)。 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
平行四边形,矩形,菱形,正方形的关系!大家谈小结: 正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形。?正方形的性质= 正方形性质:
边: 对边平行
四边相等
角 :四个角都是直角 对角线:相等
互相垂直平分
每条对角线平分一组对角。
范例精讲 .已知:如图正方形ABCD对角线AC、BD

        求证: △ABO ≌ △BCO ≌ △CDO ≌△ADO         交于点O。 
例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
例2.如图(3),正方形ABCD中,AC、BD相交于O,
分析:要证明BM=CN,大家观察
图形可以考虑证哪两个三角形全等 ?
MN∥AB且MN分别交OA、OB于M、N,求证:BM=CN。         
你能完成证明吗???
 AB=BC,∠1=∠2=45 °  条件够吗?  还需要的条件是 AM=BN
△ABM≌△BCN
你所要证明的两个三角形已经满足
了哪些条件?
由正方形可以得到的条件有: 例2.如图(3),正方形ABCD中,AC、BD相交于O,MN∥AB且MN分别交OA、OB于M、N,求证:BM=CN。          证明:
  ∵四边形ABCD是正方形 ∴OA=OB ,
   ∠1=∠2=∠3=45° 又∵MN∥AB
∴∠OMN=∠1=∠3=∠ONM=45° ∴OM=ON ∴OA-OM=OB-ON 即AM=BN 下面大家自己完成证明 练习1.
已知:正方形ABCD对角线AC、BD相       交于点O,且AB=acm,如图(2)。
 求:AC的长及正方形的面积S。            练习2.
已知:在正方形ABCD中,对角线AC、
 BD相交于点O,且AC=6 cm,如图
求:正方形的面积S。           
例3.已知:如图(4)在正方形ABCD中,F为CD延长线
上一点,CE⊥AF于E,交AD于M,
   求证:∠MFD=45° 分析:
欲证∠MFD=45°,由于
△MDF是直角三角形,只须证△MDF是等腰三角形,即只要证 _____=_____要证MD=FD,大家只须证得哪两个三角形全等?

试一试
看能不能完成证明???△CMD≌△ADF例3.已知:如图(4)在正方形ABCD中,F为CD延长线上一点,CE⊥AF于E,交AD于M, 求证:∠MFD=45° 证明:
 ∵CE⊥AF ∴∠ADC=∠AEM=90° 又∵∠CMD=∠AME ∴∠1=∠2  又∵CD=AD,∠ADF=∠MDC  ∴Rt△CDM≌Rt△ADF (AAS) ∴DM=DF
下面的证明请大家完成
练习.如图(5),在AB上取一点C,以AC、BC为正方形的一边在同一侧作正方形AEDC和BCFG连结AF、BD延长BD交AF于H。 求证:(1) △ACF≌△DCB
(2) BH⊥AF              
证明:
例4.如图(6),△ABC的外面作正方形ABDE和ACFG,连结BG、CE,交点为N。 求证:∠CEA=∠ABG                分析:欲证∠CEA=∠ABG,
大家想一想证明两个角相等的方法,
你有办法了吗???通过自己的努力,看能不能解决问题?
证明:∵四边形ABDE和四边形ACFG是正方形。     ∴AE=AB AG=AC ∠1=∠2=90°     又∵∠EAC=∠1+∠BAC=90°+∠BAC      ∠BAG=∠2+∠BAC=90°+∠BAC     ∴∠EAC=∠BAG     ∴△AEC≌△ABG (SAS)
   ∴∠CEA=∠ABG 你觉得什么样的四边形是正方形呢?正方形2.矩形有一组邻边相等3.菱形有一个角是直角1.平行四边形有一组邻边相等有一个角是直角常




法1.一个矩形的2条对角线互相垂直,它是正方形吗?
2.一个菱形的2条对角线相等,它是正方形吗?小试牛刀思考:例1:1、要使一个菱形成为正方形需
增加的条件是(填上一个条件即可)例2:下列正确的是A. 四边相等的四边形是正方形
B.四角相等的四边形是正方形
C.对角线垂直的平行四边形是正方形
D.对角线互相垂直平分且相等的四边形是正方形例:在正方形ABCD中,点A`,B`,C`,D`分别在AB,BC,CD,DA上,且AA`=BB`=CC`=DD`.四边形A`B`C`D`是正方形吗?为什么?练习:在△ABC中,AB=AC,D是BC的中点,DE⊥AB,
DF⊥AC,垂足分别是E,F.
1)试说明:DE=DF
2)只添加一个条件,使四边形EDFA是正方形.
请你至少写出两种不同的添加方法.(不另外
添加辅助线,无需证明)